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C H A P T E R  I

T H E  P R O B L E M

This thesis presents a new approach to the analysis of nonstationary macroe­

conomic and financial tim e series. By nonstationarity, we mean here specifically 

situations in which the data generating process is time-dependent. The problem of 

nonstationarity is thus quite broad and we cannot hope to deal thoroughly with all 

possible forms of nonstationarity here. Instead, we focus on situations in which the 

conditional expectation of the time series is linear in its lag variables. We have no 

doubt that the approach here can be extended in various ways to more complex 

settings and we suggest ways the basic approach can be extended in a chapter on 

extensions towards the end of the thesis. However, since the problem of estimating 

nonstationary time series models is a difficult one, we have thought it best to focus 

clearly on a relatively specific setting and develop the methods through instructive 

examples, theory and comparisons with the existing literature.

To introduce our specific formulation, we recall that most popular parametric 

methods of tim e series analysis in a variety of fields including engineering, medicine, 

oceanography, geophysics and economics, assume at least in a weak sense time- 

invariance of statistical relations. Both Box-Jenkins ARMA models and spectral 

analysis rely on the same basic principle: that univariate data can be modelled as if 

they were generated by an autoregressive linear process so that:

1
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y (0  =  £ & • » ( * - j ) +  c( 0  (L1)

where y(t) is the tim e series, Pj is a tim e invariant set of parameters such that the 

complex series 1 — "EjPjZ- * has all its zeroes strictly inside the unit circle and e(t) 

is a normally and independently distributed noise term .1 The general model can be 

viewed as a first-order Taylor series approximation to an arbitrary nonlinear tim e 

series model where the function generating the data is not explicitly a function of 

time. Methods for linear stationary time series models such as Eq. (1.1) and the 

appropriate multivariate extensions are surveyed in [33] [90] [169] [126] [181] [36]. 

Appendix B reviews some technical background related to these models.

In this thesis, we are primarily concerned with the problem of estim ating Equation 

(1.1) where the parameters Pj are time-varying. Specifically, we shall develop a general 

approach for estimating a t ime-varying autoregressive model:

= + (L2) 
i-1

in which the functional forms of the true Pj(t)  are not known. For the most part, 

we restrict attention to the case in which the operator 1 — p j ( t ) L 3 (where L  is the 

lag operator) has a bounded inverse. Since the representation is causal, only positive 

lags are considered and e(t) ~  -W(0, a 2). The problem appears untractable. If we 

were to consider all possible Pj( t)  functions and estim ate this equation directly there 

would seem to be no possible way to achieve consistent estim ates. In addition, the 

redundancy of the Pj(t)  may result in a very poorly conditioned regressor matrix. We 

would also expect similar problems with maximum likelihood estimation.

In this thesis, we develop a technique for estimating Eq. (1.2). The framework

1 For som e theoretical results, it is necessary to im pose more restrictive assum ptions such as
absolute sum m ability o f the m oving average representation.
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shares many of the advantages of nonparametric analysis and reduces to the standard 

stationary time series methodology as a special case. The model we are concerned 

with, summarized in Eq. (1.2), seems somewhat simple and idealized. However, such a 

model provides a first approach to the more general problem of nonstationarity which 

is of potential importance in macroeconomics and finance. An important reason for 

studying time-varying parameters is that the parameters of the models may depend in 

some unknown way on some state variables a:(t) for the system. A natural extension 

of Eq. (1.2) is:

y(0 -  Pi MO) »(* -  i) + <0- (L3)
j =i

Eq. (1.2) is a special case of Eq. (1.3) where time is the only state variable entering 

the functions J3j. In addition to the issues of estim ation of time-varying relationships 

between variables, the thesis also takes the further step of showing how to use the 

estim ates in Eq. (1.2) and Eq. (1.3) to define parametric estim ates of a nonstationary 

spectrum and relates these ideas to other approaches in the economics and signal 

processing literatures.

Our analysis makes the twin assumptions of linearity and nonstationarity. Hence, 

the problem we are considering is only of interest in economics and finance if it is 

reasonable in practical applications to ignore nonlinearity and if nonstationarity is a 

feature endemic to economic data and of theoretical interest.

To see whether our assumptions are relevant in practice, we will consider some 

illustrative examples from macroeconomics and finance. We consider first Fig. (1.1) 

which plots growth rates of GNP versus their lags; from the plot, the relationship 

between GNP and its lag appears quite noisy. The straight line in Fig. ( h i )  rep­

resents the statistical relationship between lagged growth rates on the x axis and
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Figure 1.1: Plot of gnp growth rates (vertical axis) versus lags 
(CITIBASE GNPQ quarterly data series for real GNP).
Kernel and ordinary autoregressive estimates are super­
imposed.

contemporaneous growth rates on the y  axis.2 Superimposed in Fig, (1.1) are ker­

nel estim ates3 of the relationship between lagged growth rates and growth rates of 

GNP; if nonlinearity were important statistically, the kernel estimates would differ 

significantly from the ordinary autoregressive estimates. While kernel regression es­

tim ates may change GNP growth forecasts by several tenths of a percentage point, 

simulations indicate that kernel estimates for data generated by a parametric model 

may look approximately the same. The implication of Fig. (1.1) seems to be that our 

assumption of linearity does not seem to be contradicted strongly by the data.

To examine the relevance of the assumption of nonstationarity with the same 

dataset, we have constructed in Fig. (1.2) a crude time-varying kernel estim ate of 

the correlation between GNP growth rates and their first lag by considering local

3 Exam ination o f the autocorrelation function o f G N P growth rates (C itibase series G N PQ ) in­
dicates that an autoregressive m odel is more appropriate than a  moving average m odel. W ith a
first order autoregressive m odel, the data in Fig. (1.1) would be clustered around a the straight line 
representing autoregressive estim ates in Fig. (1.1).

3 A kernel estim ate is a type o f local least squares estim ate which seeks to capture local features in 
the data (for an applied introduction to  kernel estim ation for econom ists, see [100]). Our estim ates 
were constructed using a  Gaussian kernel w ith cr =  0.0025 (standard deviation o f one quarter o f a 
percentage point).
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0,5

0 3

0.2

1950 1970 1990

Figure 1.2: Plot of estim ates of the correlation between GNP growth 
rates and the lagged growth rate as a function of time.

averages.4 The estim ates of the first lag coefficient in Fig. (1.2) vary from over 0.5 to 

slightly over 0.1; structural change of this magnitude implies that the effects of shocks 

vary over time and that forecasts from a model with time-varying parameters would 

differ somewhat from forecasts from a stationary tim e series model. The implication 

of Fig. (1.2) is that there is a presumption that nonstationarity may be of interest in 

practice.

However, one important question to ask is: are calculations such as those which 

lead to Fig. (1.2) reliable? Most definitely not; since Fig. (1.2) is constructed using 

local least squares estim ates, the confidence intervals around the parameter estimates

4 Moving average estim ates '.vcre used; Gaussian kernels generate roughly sim ilar results but the 
estim ates arc sm oother. Wc consider 60 point local averages for both the numerator and denominator 
o f the least squares estim ate of the regression of the growth rate o f G N P on its lag. These estim ates 
have an unusual statistical property which is reviewed in Appendix E.
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can be easily computed and they are wide.5 Even though there is considerable vari­

ation in the estim ated correlations, it is entirely possible that such variation is sta­

tistical. Indeed, if our crude kernel estim ate could reliably capture the time-varying 

properties of economic tim e series such as GNP or the stock market, there would be 

little need for our thesis.

We now turn to an example from finance to buttress our case for our dual assump­

tions of linearity and nonstationarity with an example from finance. The example 

is of daily stock market data for the New York Stock Exchange from 1962 to 1992. 

Fig, (1.3) shows the data on returns6 for 7675 trading days; a quick look at Fig. 

(1.3) and comparison with the simulated data in Fig. (1.4) indicates that the data 

is not Gaussian white noise. Evidence for deviations from white noise comes from 

a variety of sources including, for instance, thick tails in the data [133] [73].7 More 

fundamentally, there is much evidence that means and variances of stock returns vary 

over tim e. Many important financial models such as the intertemporal asset pricing 

model (ICAPM ) of Merton [137] are based on the assumption that means and vari­

ances are influenced by a finite number of state variables which change over time 

in a known manner. A wide variety of explanations for deviations from white noise 

have been proposed in the finance literature and include, for instance, time-varying 

conditional volatility 8 [70] [30] [194] and chaotic price movements. W ith financial

5 In tim e series o f this size, for instance, it is thus always likely to  he unclear whether the first 
order autoregressive coefficient follows for instance a random walk process or is constant over tim e. 
For instance, a test we have developed for structural change called the cumulative waveletgram, 
often cannot reject (the results depend on the choice o f wavelet function) at the 5% level the null 
hypothesis that G N P growth rates are governed by a tim e-invariant first order autoregressive process. 
Similar results are reported by Hansen [94] using a likelihood ratio test. Nevertheless, Ham ilton has 
shown that m odels o f tim e-varying parameters arc useful in characterizing the peaks and troughs of 
business cycles [91]. Other m acroeconom ic tim e series show significant evidence o f structural change.

0 C R SP (University o f Chicago Center for Research on Security Prices) cum  dividend returns.

7 Clark [41] has argued that thick tails can be explained by changing how tim e is measured in the 
market. Stock [191] has investigated similar questions with reference to  the business cycle.

8 The im portance of nonstationarity in finance is underscored by the fact that tim e-varying con-
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Figure 1.3: Daily stock returns (Standard & Poor’s value weighted 
including dividends).

data, therefore, nonstationarity is well-accepted in the literature so we need to focus 

especially on the case for linearity.

Fig. (1.5) plots the lag return (horizontal axis) against the return.9 Since the 

data occurs in a temporal sequence, one possible explanation for the evolution of 

the data is that there is some low dimensional nonlinear model which generates the 

data. In some economic time series, a linear model such as a first order autoregressive 

model can explain much of the variation of the data, but for this asset market data, 

correlations are weak so that that a good time-invariant low-dimensional model (if it 

exists) will be nonlinear.10 However, Fig 1.5 reveals no discernible linear relationship

ditional variances have been integrated into standard asset pricing m odels in finance. For instance, 
see [136] [186] [208] [184] [5].

9 Outliers such as the 1987 stock market crash have been removed from the plot.

10 There has been much work in trying to discover a  sim ple nonlinear m odel which determ ines asset 
returns, but success has to date been lim ited. A further com plication is that the data generating 
process is unlikely to depend on only the first lag but on m any lags o f the data; thuB, a rather 
high-dim ensional surface m ay have to be estim ated from noisy data. Am ong the m ethods developed  
to deal w ith the problem o f estim ating nonlinear relationships in tim e series m odels are threshold
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Figure 1.4: Independent Gaussian noise drawn from distribution 
with same variance as daily stock market data.
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Figure 1.5: Plot of daily stock returns (vertical axis) vs. lagged stock 
returns.
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in the stock market data.

We have just reviewed some illustrative examples and have provided some empir­

ical support for our focus of attention on nonstationarity. First, the more developed 

literature on nonlinear economic tim e series has tended to find that empirically most 

economic relationships, at least in the macroeconomy, do not appear to be statis­

tically far from linearity [32].11 While we believe these findings are premature, one 

possible explanation for them would be that economic agents conceptualize state vari­

ables in a linear regime as this facilitates application of control. There is no inherent 

problem with instability when state variables follow a linear stochastic process with 

time-varying coefficients. Second, there is quite a bit of evidence of various types 

of nonstationarity in economic tim e series, especially financial time series.12 Devel­

opment of nonstationary time series methods hence may be very useful in trying to 

understand the mechanisms underlying economic dynamics. Third, development of 

nonstationary tim e series methods has important theoretical implications for rational 

expectations economics which assumes stationarity of economic relationships.13

autoregressive m ethods (196], nonparametric estim ation m odels [180], sem i parametric estim ation  
m ethods [24] [179] [79] [147] and bilinear tim e scries m odels [175] [83] [192], Som e o f these different 
approaches to uncovering nonlinear relationships in tim e scries are reviewed in Tong’s recent m ono­
graph [197]. Som e exam ples can also be found in the recent Santa Fe m onograph on tim e scries 
prediction [203]. See also [84].

11 There is even stronger evidence that m acroeconom ic tim e series do not exhibit low dim ensional
chaotic behavior [75].

13 For instance, Bossaerts and Hillion [31] find that much o f the overfitting in finance m odels such 
as for exchange rates is due to tim e variation in coefficients. Barsky and DcLong [13] also find 
that much o f the reported excess variation in stock prices [206] can be explained with tim e-varying  
dividend growth forecasts. Benjam in Friedman [76] finds considerable tim e variation in relationships 
between m oney, interest and prices in the U .S. economy. Perron [163] finds that the results o f unit 
root tests change dram atically when structural breaks are included in the analysis.

13 For explicit argum ents along these lines, see [124]. This argument is perhaps som ew hat weaker 
than the others. Given the precedent o f the past few decades, it seem s unlikely that the macroe­
conom ic theory o f twenty years from now will look anything like the m acroeconom ic theory today. 
However, it is the case that both New Keynesian and New Classical econom ists make m any o f the 
sam e assum ptions about stationarity. To som e degree, as pointed out by Lucas [123], a  careful 
reading o f M odigliani and Grunberg [139] or Muth [142] leads to different conclusions about the
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While the approach we will develop has certain advantages over both kernel esti­

mates and standard parametric approaches, it will be the case that statistical analysis 

and inference on small datasets such as those commonly encountered in macroeco­

nomics is subject to doubt. Since we would like the approach we develop to be 

applicable to both large and small datasets, we are sensitive to the issue of robust­

ness. In some sense, both standard parametric and nonparametric approaches are 

extreme cases of the approach we advocate. We think in practice researchers should 

consider some fixed number of possible parametric models and pick the best one. As 

the number of models becomes large, the approach becomes fully nonparametric. As 

the number of possible models gets small, we come closer to the parametric case. 

Nevertheless, even in the case of simple stationary tim e series models, there are often 

major robustness problems in terms of properties of forecasts. 14 In the case of small 

datasets such as occur in macroeconomics, one needs to approach any  time series 

analysis with caution . 15

What do we have to contribute which is new to the literature? ARCH models and 

cointegrated models assume some form of stationarity or time-invariance; in the case 

of ARCH models it is the conditional variance which follows a stationary processs 

and in the case of cointegrated models, it is a linear combination of nonstationary 

variables which follows a stationary process. One possible model of nonstationarity is 

the hidden Markov model [173] [172] which was developed for the processing of speech 

signals16 and further developed by James Hamilton [91] and applied to macroeconomic

stationarity o f  structural econom ic relationships. In the beginning o f Ch. IX, we review som e o f the  
im plications o f nonstationarity for econom ic theory.

14 For a  good exposition o f som e o f these problems, see [146]. Useful exam ples are in [202].

1B On the other hand, one reason cited for the use of tim e series m ethods in macroeconom ics 
and finance is concern about the robustness and empirical predictive performance [144] o f large 
econom etric m odels w ith m any more parameters. The newer structural econom etric m odels based 
on Euler equations [97] have even more serious problems em pirically [80] [67] [96].

16 This m ethod was developed at the Com m unications Research Division o f the Institute for De-
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data. This m odel assumes that structural change is abrupt and there is a finite 

number of regimes. The major m odels in the literature hence make strong identifying 

assumptions and are not really tools for exploratory data analysis and comparing 

different potential m odels. There are good reasons for this. Nonparametric m ethods 

which make as few identifying assumptions as possible are often not practical on the 

short tim e series available in macroeconomics. Engineers require nonstationary tim e  

series m ethods in their work on speech analysis and other areas in nonstationary 

signal processing but they have generally used nonparametric m ethods based on the 

Cohen’s class of estim ators ([28] reviews this literature in detail; Chapter 7 contains 

also contains a section which is a review of part of this literature).

In the thesis, we thus suggest a framework which represents a compromise be­

tween a fully nonparametric approach and a standard parametric approach. We do 

this by considering a possibly large family of parametric models and using a fast 

algorithm to search for the best possible parametric model. The m ethod we use is In 

some sense a combination of the pathbreaking Matching Pursuit algorithm developed  

independently by M allat and Zhang [131] and Qian and Chen [171] for the analysis of 

functions in terms of waveforms with ideas from projection pursuit regression [77] in 

statistics. The approach is also related to sieve regression [85] [207] and neural net­

work models [141] [102] for tim e series. We hope that one contribution of the thesis 

is to show that such sophisticated methods which were developed to  estim ate time- 

invariant nonlinear relations are also relevant for estim ation of t ime-varying linear 

relations.

fense A nalysis in Princeton and at Carnegie-M ellon University by Raj Reddy. T h is m ethod is 
reviewed below in our literature review on nonstationary m odels.



www.manaraa.com

C H A P T E R  II

F O R M U L A T IO N  O F P R O B L E M  

We recall from Ch. I that we are interested in estim ating the regression equation:

y ( 0  =  E f t ( 0 » ( « +  (I U )

where e i(i) is a serially independent and identically distributed noise term. We do 

not know the functions and wish to estimate them. We now sketch our approach 

to estim ating Eq. (II.1). We assume Eq. (II.1) can be rewritten as:

K

y ( 0  =  5 Z <*khk{t) +  £2 ( 0  (11.2 )
fc=i

where:

( 1 ) the ajt are parameters,

(2 ) the hk are referred to as model components,

(3) £2 ( 0  is a serially independent and identically distributed noise term.

The concept of a model component will be fully defined in Chapter III; suffice 

it to note here that that the hk must be appropriately defined functions of lagged y

values. The number of model components, K ,  can be quite large, even larger than

sample size T.

We propose the following method to estim ate the parameters In the initial 

step, we define y° =  y  where y  is the data. We run a series of univariate regressions

12
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against each of the model components and pick the regression which maximizes some 

predefined criterion function such as the r 2 of the regression. We call the model com­

ponent which maximizes our r 2 criterion h1. We call the residual from this regression 

y 1. We then run separate univariate regressions of y 1 against each of the model com­

ponents and pick the regression with the highest r 2. We call the model component in 

the regression which maximizes our r 2 criterion h2. We then run a multiple regression 

of y against hl and h2, yielding:

y  =  C 2h} +  C 2h2 +  y 2. (II.3)

The notation C k refers to the regression estim ate at stage k of the model component 

selected at stage j .

We then run univariate regressions of y 2 against each of the model components 

and pick the regression with the highest r 2. We call the model component in the 

regression which maximizes our r 2 criterion h3. We then run a multiple regression of 

y against h1, h2 and h3 and call the residual y3, yielding:

y =  Clh> +  C \ h 2 +  C \h 3 +  y3. (H*4)

We continue at stage j  of the estimation procedure by running univatiate regres­

sions of yJ_1  against each of the model components to select hJ. We then run a 

multiple regression of y  against the model components hk for k <  j  and call the 

residual from the regression y 3. We continue until either the maximal r2 becomes 

zero, we reach some pre-specified lim it defined by a fixed number (e.g., T  — 10) of 

iterations or by a statistical test or procedure.

In other words, given Eq. (II.2), the procedure concludes with an estim ated model:

v  =  Y l c ? h i +  y N
i- i
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=  £  &kht  +  y N (II.5)
fc=l

where N  is the final step of the algorithm and K  is the number of model compo­

nents, The regression coefficient ctk on a model component hk is equal to zero if the 

model component hk was not selected and the regression coefficient d* is equal to the 

appropriate Cf* if the model component hk was selected.

What makes this estimation procedure attractive is that it is computationally 

feasible, simple in that is based on ordinary least squares regressions and produces 

estimates J2k &khk{t) which converge to ~ j )  a sense to be made precise

in the theoretical chapter below.

Important problems which need to be addressed include: (1) the choice of model 

components hk with which to work (i.e., the “innocuous” step from Eq. (II. 1) to Eq. 

(II.2)); and (2) The procedure spelled out above can actually involve an enormous 

number of steps; a practical stopping rule is required. These are among the issues we 

deal with in the thesis.

We now review what is to come in the remainder of the thesis, chapter by chapter:

•  In Ch. 3 on Model Development and Simulation Examples) we lay out some 

families of potential nonstationarities in the /3j(f), derive the corresponding 

model components and carry out some some simulation examples.

•  In Ch. 4 on Theoretical Analysis , we analyze issues of convergence and con­

sistency of point estimates for two broad classes of autoregressive models with  

time-varying coefficients.

•  In Ch. 5 on Auxiliary Results, we prove some auxiliary results including: (1) 

some basic results on use of nonlinear regression confidence intervals for our 

data, (2 ) convergence rates.
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•  In Ch. 6  on A Stopping Rule, we provide a new test for randomness in economics 

which is particularly relevant for time-varying parameter models. We believe it 

provides a useful ‘stopping rule’ in the case of nonstationary tim e series models.

•  In Ch. 7 on Time-Frequency Spectral Analysis, we show how to define a non­

stationary spectrum in terms of our estim ated models. This provides a useful 

point from which to review the literature on other methods of nonstationary 

tim e series.

•  In Ch. 8  on Economic Examples, we provide applications of the procedure to 

macroeconomic and financial tim e series data.

•  In Ch. 9 on Implications and Extensions, we review the implications of nonsta­

tionarity for economic theory as well as some possible research projects which 

follow from the results in the thesis.

•  In Ch. 10 on Conclusion, we summarize our main results.

In addition to the results in the body of the thesis, there are some results of inde­

pendent interest in an Appendix on “pursuit methods” (Appendix F), which discusses 

in detail how the method here relates to other pursuit methods in nonparametric re­

gression such as “projection pursuit” [77] and “matching pursuit” [131] [171].



www.manaraa.com

C H A P T E R  III

M ODEL DEV ELO PM EN T A N D  SIM ULATION EXAM PLES

The purpose of this chapter is to explain and demonstrate the mechanics of our 

approach to estimation of tim e series models. This approach focuses on the idea of a 

“model component” j a concept which is discussed in depth in this chapter. We also 

provide some simulation examples to show how the method works in practice.

From Statistical Models to Model Components

The thesis presents a general approach to estimating a time-varying autoregressive 

model:

=  +  ( i i i - i )
j=i

where ei(f) is a serially independent and identically distributed disturbance term and 

in which the functional forms of the true 0 j( i )  are not known. The purpose of this 

section is to show how to move from Eq. (III.l) to “model components” which we 

can use in our procedure. This transformation is useful not only because it provides a 

means of estimating Eq. (III .l) but also because many of the ideas can be generalized 

to other more complex models such as:

•  State-dependent models in which the depend on state variables x( t )  instead

of time:

16
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!f(0 « E  ft (*(0)»(*-i)+ «(*)• (IIL2)
3=1

•  Structural time series models in which the regressor variables are other tim e

series instead of lags of the data. An example of such a model is:

M

y ( 0  =  J 2  f t ( 0  +  eCf ) (IIL3)
j=i

where Xj is another economic variable, perhaps lagged. A simple case is where 

j/(i) is cointegrated with another variable xj( t )  but the cointegrating relationship 

varies slowly over time.

Our goal is to represent Eq. (III.l) which is nonlinear in the variable 'f' with an 

equivalent model which is linear in transformed regressor variables hk which we call 

model components:

Vi1) =  X ) /tjt(i) +  e2(f) (III.4)
k=1

where K  is the number of model components and e2(t) is a noise term . 1 Eq. (III.4) 

is a useful representation because the transformed variables /tjt(i) enter linearly and 

the coefficients a*, are time-invariant. Thus, once we have chosen appropriately the 

transformed regressor variables hk, we can estim ate the coefficients a* by ordinary 

regression methods.

If we knew the precise parametric form of the (3j(t) in Eq. (III .l) , we could use 

nonlinear regression methods to estim ate /3j(t). However, we are concerned with  

situations in which we do not know the precise parametric form of the f3j(t) and, 

in these situations, we do not know the form of the likelihood function or the sum

1 We have used the notation e2(£) instead o f the e i( i)  in Eq. (III .l)  because we wish to allow for the
possibility that there m ight be approxim ation error in m oving from Eq (III .l)  to the representation 
in Eq. (III.4).



www.manaraa.com

18

of squares function. Thus, we cannot use the nonlinear optimization procedures 

commonly used in econometric applications. In such cases, we shall show we can use 

a representation such as Eq. (III.4) to choose a model.

We now forget for a moment that we might not know the true regression model 

and pretend that we do know its form. Our goal is to illustrate particular economic 

problems and the corresponding model components which allow one to transform the 

nonlinear estimation problem of Eq. (III .l) into the simpler linear framework of Eq.

(III.4). After considering some basic problems, we proceed to consider what to do in 

practical situations where we are unsure about the true form of the model.

Time-Invariant A utoregressive M odels

The simplest example of a model of the form Eq. (III.l) is when the 0 j ( t )  are 

constant over time. This is the standard autoregressive model:

» ( 0  =  £  f t » ( « -  i )  +  « ! « •  (n i.fi)
i - 1

In this case, we can define the model component /i*(f) to equal y ( t  — j )  for j  =  k 

and 1 <  k <  J . In this case, the a * in Eq. (III.4) equal the (3j in Eq. (III.5) and 

the functions f3j(t) in Eq. (III.l). We now proceed to the next simplest (and first 

nontrivial) example.

Switching Autoregressive M odels

The simplest type of time-variation in parameters one might imagine is a situation  

in which the autoregressive parameters change at some point in tim e t 0 to new values. 

This simple model is a commonly used econometric model of structural change .2 

In this case, the j3j{t) in Eq. (III.l) are:

{ 7 j 0  <  t  < t0
, . (n i.fi)

7 ) otherwise.

3 The theory o f this model is developed in [7] [34]. For an application, see [163].
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Thus, we can represent the f3j(t) as:

& ( 0  — 7 j  i[ottD—ijC^) +  i ' j  i[e0- i , T ] ( 0  

where the indicator function l[a,b] ( 0  >s defined as:

f 1 a <  t  <  b
lM ] ( 0  =  . (HI-*)

 ̂ 0  otherwise
In terms of the basic model equation, Eq. (III.l), we have:

j
i/ ( 0  =  +

j = i

= £  fa l [o,ia-i](t) y(t -  j) + i j  i[io-i,T](0 y(t -  i)] + d(0- (in.9)
3 = 1

We now show how we can use the last line of Eq. (III.9) to define natural model 

components for our problem. We define:

h2j{t;U) = l[o,t0_i](t) y(i — i) (111.10)

h2j-i{i;to) = l[t0-i,T](t)y{t -  j) (III.ll)

and use Eq. (III.9):

1/(0 =  Z  [7jl[o1t0-i](O l/(i -  J) + 7 j  l[io -i,T |(0 y (i ~  J)} +  £i ( 0
i

j
=  [t,- h2j(t\ t0) +  7 J h2j - i ( t ;  ô) ] +  £i(t)

3=1 
23

=  E  a k M <;<°) +  ci( 0  ( i n . 1 2 )
k-\

where in the last line of Eq. (III.12):
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7 * h evena

'YtiiU otherwise
(111.13)

Thus, by estim ating the linear equation:

!/(*) =  S  a * M f it0) +  e2( 0  (111.14)
h= 1

we can recover estim ates of /3j(i). We also note that Eq. (III. 14) is of the form Eq.

(III.4). To summarize, in constructing the model components hk, we have built the 

nonlinearity in the autoregressive parameter functions 0 j ( t )  into the definition of the 

regressor variables.

Now, suppose that we do not know the true value of to. In this case, we construct 

different model components for each possible value of to. The iterative procedure 

outlined in Ch. II and reviewed in more detail in this chapter defines a mapping 

between a set of potential model components hk (which might include all possible 

values of t0) and a selected model (which we would hope would contain an implicit 

estimated value of to as close as possible to the population parameter).

It may also be the case that there may be more than one structural break. In 

this case, we construct model components of all different lengths so as to allow for 

multiple structural breaks. These model components have the explicit form:

(III. 15)

where bk and e*. represent the beginning and end of a given period of structural 

stability and jk is the corresponding lag. Since there may be many possible model 

components of the form Eq. (III. 15), a procedure is required to pick out a model 

from a set of possible model components. Again, the iterative procedure proposed in 

the thesis solves this problem.

M o d e ls  w ith  G rad u al O n se t o f  S tru ctu ra l C h an ge
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To consider how we might generalize the concept of a model component to handle 

other variants of structural change, we note that it is reasonable to think of the 

indicator function l(o,6](0 as a type of window function. While indicator functions 

are the simplest possible window functions, they are by no means the most desirable 

functions if there are complex dynamics in the adjustment process to a new economic 

regime.

Consider once again the tim e series model:

»(t) = Eft(0»(*-i) + e. (<) (line)
i - i

but let the adjust only flowly in response to changes in underlying economic

fundamentals. W ith slow adjustment, it seems reasonable to replace the sharp edges of 

the flat autoregressive parameter functions used in the case of abrupt structural 

change with flat autoregressive parameter functions proportional to window functions 

with smoothed edges gk(t}'

9k(t) =

e if t <  bk

1 if bk <  t  <  ek ( “ -IT)

e if t >  e*

An example of a function of this type is shown in Figure (III.l). 

Thus, we have:

j
y(0 = EftCOsK* - j )  + *i(*)

j=i 
K

-  a k 3 k ( t ) y { t - j k )  +  e i ( i )  (111.18)
Jt=i

3 The parameters and e* here are set so that c* — 6* is 3 /4 th  the length for the corresponding 
flat window function. T he parameter c* in Equation (III. 17) is set as where and bk are
the end and beginning o f the corresponding flat window.



www.manaraa.com

22

1

OB

0 6

04

0 2

0
0  to o  200 300 «W  500

Figure III.l: A flat window function with smooth Gaussian edges.

where is the lag associated with the window function We now use Eq. (III.18)

to move to an equation which involves model components. We have:

K
2/(0 = 2  a k 9k ( t ) y ( t - j k )  + ei(i)

k=i 
K

=  £ a * M  0  +  M 0  (i i i .19)
jt=i

where:

M O  =  M 0  y (1 ~  h )  (III.20)

so that the M 0  defined by Eq. (III.20) are the natural model components for this 

type of problem. Therefore, once again we can use model components /tjt(f) as an 

intermediate step in constructing estimates. Since the parameters c £% and e* might 

not be known a priori, we may want to construct model components for the different 

values of these parameters we think are likely to occur. We note that either the e*

or might be past the end of the tim e series so that the window function gk(f) can
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represent slow adjustment to a new regime which is permanent.4 We may also wish 

for precision to write ea(0 instead of e i(i) at the end of the last line of Eq. (IIL 18) 

since in practice our specified model components may not capture the true model 

exactly.

M odels with Slow Structural Change

The choice of Eq. (III. 17) as a shape for the autoregressive functions (3j(t) pre­

sumes that adjustment to a new regime occurs relatively rapidly and that there is 

relative parameter stability once adjustment occurs. It may in fact be the case that 

structural change occurs as a continuous process; for instance, it may be that tech­

nological advances in managing inventories are speeding up the transmission mecha­

nism in an inventory equation so that economic factors which might previously have 

contributed to long lags begin to produce shorter lags. Whatever the underlying eco­

nomic cause, there are a wide variety of forms the functions @j(t) might take in an 

environment with slow structural change.

One possibility is that the (3j(t) are proportional to members of a family of Gaus­

sian window functions or, more generally, might each be given by a weighted sum  

of different window functions gk(i) corresponding to the effects of different economic 

factors. For this case, in Eq. (III.l) we have:

j
y ( t )  =  & (*)»(* ~ i )  +  ei ( 0

j - i
K

-  £  a k 9 k { t ) y ( t ~  jh) +  £i(t) (III.21)
Jt=i

where, for instance:

9k{t) =  e (III.22)

4 For an exam ple, see Fig. (111.19)



www.manaraa.com

24

In Eq, (111,22), cr* is a width parameter for window k and ck is a centering parameter. 

Using Eq. (III.21), we have:

K

y ( t )  =  Y  a kgk( t ) y ( t - j*) +  ei ( 0
k=i
K

=  Y  akhk{t)  +  e i(i) (III.23)
t=i

which is in the form of Eq. (III.4) with model components:

hk{t) =  gk{ t ) y { t - j k) (III.24)

where j k is the lag associated with the model component hk. If we did not know the

values of ck and crk> we could include many different hk(t)  corresponding to different

choices of lags and ck and a k.

Another model of structural change may feature a permanent jump in the value 

of the autoregressive function Such a model may be relevant in cases in which

there are permanent changes in policy. We have:

' if t <  bj

f t ( 0  =  < 13 +  l j  ( £ % )  if < t <  ej . (III.25)

. 7j +  7j t >  ei
An example of a flj(t) function of this form is shown in Fig. (III.2) where 7 j =  0.2,

7 j — 0.6, bj =  300, and ej =  410.

In terms of our linear time-varying autoregressive model:

z/ ( 0  =  S f t t O v t 4 -  3) +  ei ( 0
j=i

=  S ( 7 i  l [ o ,T ] ( i ) y ( i  ~  j )  +  1 j  -  j )  +
j=i
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Figure III.2: An example of a Pj(t)  function with a permanent jump.

=  £ 7 * M 0  +  H  7 * - j M 0  +  J 2  7 I -2 ./M 0  +  ei(4)- (111.26)
fc=l fc=J+l k=2J+l

In the last line of Eq. (III .l), the first two sums contain model components which are 

the model components with flat windows introduced above:

M 0  =  W . i ( 0 y (‘ - J ' 0  ( in .2 7 )

whereas the last sum contains the new model component:

M 0  =  M 0  Vi* ~  3k) (III.28)

where:

9*(‘) = W .](0 -  (III-29)

In this section, we have shown how model components with different window
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functions capture the effects of slow parameter variation. We have considered two 

examples: ( 1 ) “mean-reverting” structural change in which the autoregressive param­

eter is described by a smooth Gaussian function; (2) “permanent” structural change 

with a period of adjustment in which the autoregressive parameter changes linearly. 

M o d e ls  w ith  P e r io d ic a lly  V ary in g  P a ra m eters

In addition to models of slow structural change, we may either have periodic 

structural change due to effects such as seasonality or it may be that the adjustment 

to new regimes exhibits the oscillatory or “overshooting” behavior predicted by a 

variety of economic m odels . 5 In this case, the autoregressive parameter functions 

/3j(i) may exhibit oscillatory behavior. To represent such behavior effectively, we 

introduce model components with periodic window functions.

The simplest possible model of oscillatory behavior is:

=  Vj +  l i  cos(wjf) (111.30)

In this case, we have:

y( t )  =  J 2 P j ( t )y ( t - j )  +  e*(t )
i=i
j

=  I ]  h i  v t t  -  i )  +  7j co s{Ujt)y{t  -  j ) )  +  e i ( i)
J=1

J  2 J

=  Vi hJ +  £  7J-J  h3 +  ei ( 0
J=1 3-J+l
K

=  ^  ajfc/ijt +  ex(t) (III.31)
k-i

where:

{7)k if k <  J

7*- j  if J  +  1
a* =  I 3  (III.32)

fc <  2J,

5 Two examples are: [64] [27].
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and the model components hk(t)  are:

h { t ) = y ( t ~ j k )  (III.33)

for k <  J  and an associated lag jjt =  k\ and:

hk{t) =  cos(wj^) i}{t -  j k) (III.34)

for J  +  1 <  k <  2J.  A more complicated solution is to introduce model components 

parameterized (to scale) by t/y, 'yj and ujj.

In Eq. (III.30), we have assumed that the oscillatory behavior of the autoregressive 

function (t) is time-invariant. However, much of the economic motivation we have 

given for use of oscillatory models is that such behavior is a response to unusual policy 

or technological shocks. Thus, it seems reasonable to generalize Eq. (III.30) to:

f t ( 0  =  Vj +  7j 00 cos(wjt) (III.35)

where bj and ej  represent the beginning and end of the period of oscillatory behavior. 

In this case, the autoregressive equation becomes:

y ( 0  =  +
j - l

J

=  2 2  [ViVit -  i )  +  7 il |tJiei](0  cos(u>jt)y(t -  j)]  +  e i(i)
3=1

J  21

=  2 2 m hi +  22  I j - j h j  +  e^t )  
j - l  j=l+l
K

=  2 2 a ^  +  € i ( 0  (IIL36)
jt=i

where:

( T}k il k <  J  
<*k =  < (111.37)

[ 7k~j  if J  +  1 <  k <  2J
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Figure 111*3: A low-frequency basis function based on a Gaussian win­
dow. The window function lies within an envelope of two 
Gaussians.

and we use the model components in Eq. (III.33) for k <  J  and the model compo­

nents:

hk(t) =  l[6fc>Cfc] (i) c o s ^ M *  -  jk)  (III.38)

to capture the oscillatory component of /3j(f) (model components J  -f 1 <  k <  2J ).

Since structural change may be occurring slowly, the oscillatory component in Eq. 

(111*35) may instead take the form:

f t ( 0  =  Vi +  7 i  9j(t)  cos(tOjt) (IIL39)

where gj{t)  is a window function.

Eq. (III.35) is a special case of Eq. (III.39) when the window function is an 

indicator function. When the window gj(t )  is a Gaussian window, the oscillatory 

component of the autoregressive function is proportional to the window function 

shown in Fig. (III.3).

Using the same steps as in Eq. (III.31) but replacing the indicator function with
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Figure III.4: An example of a periodic Pj{t)  function, 

a smooth window, we have that the appropriate model components are:6

hk{t) =  gk(t) cos(wj±t)y(t -  j k) (111.40)

where gk(t) is a window function such as the Gaussian window superimposed in Fig. 

(III.3).

As another example, we may know that /3j{t) is periodic with some known peri­

odicity K .  In this case, we have:

ft(t) = Qj 77 (i -  [ t ^ i ]  k ) (111.41)

where [.] denotes integer part. The function Tj represents behavior within any regime 

of length K .  Thus, for example, if K  =  10, /9j(l) — /? j( ll)  =  Pj(21) and so on. An

example of a 0j ( t )  function of the form Eq. (111.41) is shown in Fig. (III.4). In this

case, the 7 j(<) function is Gaussian.

In this case, we have:

G Based on our experim ents, it is not a  good idea to include high-frequency oscillations in window  
functions.
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j
y ( 0  =  £ f t ( * M < - i )  +  eiC0

j = i

=  'E'Otjrj (< -  p ^ 1] v i t  -  j )  +  ei ( 0

X > i M 0  +  M 0  (111.42)
j = i

where:

M O  -  rd ( t  -  i f )  y [ t  ~  j )  (111.43)

is the resulting choice for the family of model components for this type of problem. If 

we do not know the periodicity i f  or the type of function rj, we may wish to introduce 

many model components of this type.

D istributed Lag M odels

In this section, we illustrate by example that model components have wider appli­

cability than might be assumed from the examples above. One traditional model used 

in econometrics is the distributed lag model in which restrictions are placed on the 

form and shape of the Economic explanations given for these models include

adaptivity in expectations or delivery lags. Some of the literature on these models is 

surveyed in ([113], Ch. 9-10) [58], The basic model is that the /3j  are related in the 

time-invariant sense that:

y ( 0  =  5Z &&(* “ J ) +  «*(*)
j = i

=  Z i T’(i» 0 )i/( i “ i )  +  ei(O  (III.44)
3 = 1

where 8 is a parameter vector which determines the form of the function r. For 

example, the function r could be of polynomial form and the parameters 8 could be 

the coefficients on the polynomial expansion:
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( IIL4S)
1 = 0

where P  is the order of the polynomial distributed lag. Other possibilities for the form 

of r ( j t 8) studied in the literature include spline functions and harmonic functions of 

lag as well as models which restrict the shape of the lag function to a specific form 

such as arithmetic or geometric.

Suppose now we think that the distributed lag relationship, whatever form it 

might take, is varying over tim e, so that:

ft(«) = aj(0r(j,9)- t111-46)
where the function r ( j ,  9) may be any possible distributed lag function (for example, 

it may be of the form Eq. (111.45)). In more generality, we might wish to consider 

situations in which the /3j(t) are sums of terms such as occur on the right hand side 

of Eq. (III.46):

= (111.47)

so that:

j
y {1) =  J 2  P i v i 1 - 3 ) +  ei ( 0

J=1 
K  J

=  m z  a k gk( t ) r k( j , 9 ) y ( t  -  j )  +  e^ f) 
k = i  j =l
K  J

=  5Z a * 9k{t) r kU, 8) y ( t  -  i )  +  <u( 0
k =1 j= l
K

=  5Z a fc/ifc(i) +  e(i). (111.48)
k =1

In this case, Eq. (111.48) suggests that we construct model components of the 

form:



www.manaraa.com

32

hk(t) =  gk(t) £  rk( j , 0) y (i -  j )  (III.49)
i=i

where rk is the form of the distributed lag function associated with model component 

k and gk(t) is a window function (such as a flat window).

Since each of the model components in Eq. (III.49) represents behavior within 

a given regime, a sum of such model components seems to be a reasonable model 

of an entire tim e series. The advantage of using such model components is that the 

functions r k reduce the degrees of freedom required in estimation.

Summary

In this section, we have reviewed various models of nonstationary tim e series 

and their corresponding model components. We have shown that there are natural 

choices for model components for a variety of models of nonstationary tim e series. 

These choices and the special properties of the model components are summarized in 

Table (III.l).

At the beginning of the section, we urged the reader to forget for a moment that 

we might not know the true model and imagine that the true model is known. Now, 

we will discuss what to do when we do not know the form of the model. Two words 

capture the essential intuition: “be greedy”. By this, we mean that the researcher 

should look at Table (III .l) and choose all the families of model components and 

parameterizations which he thinks might be relevant to the problem at hand and 

include them in a set of potential model components. The procedure we propose in 

the thesis then has the model components ‘com peting’ to be included in the estimated  

model. The researcher may make competition ‘imperfect’ by placing less weight on 

model components which produce estimates with poor statistical properties or which 

the researcher feels are less plausible theoretically.

The perspective we propose is thus considerably different from that of classical 

econometrics or statistics in which the researcher gives one model a ‘monopoly’ over
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Economic /  Stochastic Model Model Components

Stationary model

# i ( 0  =  7i

Ajb(t) =  y (i -  i*)

Local stationary model 

0j{ t )  =  EfcTfclp*.«*](*)

M O  =  1 [6*.-ibiC0 y(* — i* )

Fast adjustment to structural change

Pj(t)  =  £ jt7 fcM 0

/ifc =  9k( t )y { t  -  jk)

gk flat window with

Gaussian edges (c.f., Eq.(III.17))

Smooth structural change 

/3j(i): temporary struct, change

M O  =  9k(t)y(t  ~  jk)

gk{t)'- Gaussian window

Permanent change 

f3j(t) trending

Use both: (1) hk{t) =  l^ .^ jC O M  “ 3k) 

( 2 ) hk(t) — Ch_bhy(t  jk)

Oscillatory relationships

f t  CO =  Vj +  Vj cos(wjt)

Use both: (1) kk(t)  =  cos(aj^t) y(t  — j k) 

(2) hk(t) -  y ( t  -  j k)

Local periodic relationships

#i(0 = Vi +  7j0j(O  cos(w3-<)

Use both: (1) hk(t)  = gk{t)  cos(uJkt ) y ( t  -  jk) 

(2 ) hk(t) =  y ( t - j k)

Periodic relationships

p s{t +  X K ) = 0 j {t) x e z

MO =  r k ( t -  [^ ]  K )  y ( t - j k)

rjt window function

Distributed lag relationships

Pj(t)  =  E k = 1 <Xk9k( t ) rk( j , 0)

MO = MO £;=i n ( j ,  0)y(t  ~  j )

rjt distributed lag function 

gk window function

Table III.l: Summary Table of Families of Model Components and 
Corresponding Economic /  Stochastic Models.
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the data. Both because our procedure lies in between nonparametric and parametric 

approaches and also because it has some special features, the reader may wonder why 

we have chosen the particular approach developed in Ch. II and Ch. III. We address 

these issues in appendices. In Appendix K, we explain that why we have chosen the 

specific approach outlined in Ch. II instead of other similar possible regression-based 

approaches which also use model components. In Appendix L, we address the more 

basic question of why we develop a complex adaptive regression model instead of 

something more simple.

Examples

We now consider some examples on simulated data to see how our method works 

and to provide examples of how the method can be used in practice. These examples 

help provide some crucial “engineering” details about how to use the method proposed 

in the thesis. Much of our progress in understanding the method came through 

such experiments. As Huber ([106], pp. 469-470) has pointed out with reference 

to another method (Projection Pursuit regression), “The situation is analogous to 

that in numerical spectrum analysis. There the real progress did not come through 

mathematical statistics in the usual sense, that is, through consistency and asymptotic 

normality proofs, but through a mathematically much more primitive, qualitative and 

quantitative understanding,"

All the examples in this chapter were computed using a time domain procedure 

described in Appendix J in which model component details are stored as a series of 

vectors and the simple regressions are computed by sums over only the relevant time 

intervals. Appendix J also presents an FFT algorithm which may be used for large 

datasets and Appendix M contains a formal analysis of computational requirements 

in order to show formally that implementation of the procedure modern workstations 

or personal computers not problematic.
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First Order Autoregressive Processes

As a simplest possible example, we consider a first order autoregressive process 

(AR1):

y ( t )  -  (3y(t  -  1) +  u(t)  (III.50)

where:

— 1 <  jfl <  1 (111.51)

where -u(i) is a normally distributed (N (0 , 1 )) noise term, and y( t )  is the random 

sequence we are interested in decomposing. Given y (0 ) =  0 and a sequence u(f) 

of independent normally distributed random variates we use Equation (III.50) to 

generate a sequence {y(i)}?Li where T  is sample size. We simulate a series with 

T  =  512 and p  =  0.9:

y( t )  -  0 .9y ( t  -  1) +  u(t)  (111.52)

where u (i) ~  JV(0,1). For the realization we consider, the sample variance of y[i )  is 

6.19 and its sample mean is .1937.

Starting with the simulated data set {y (i)} (I j we use our method to try to recap­

ture Eq. (III.52). To estim ate the model, we must select a family of types of window 

functions gm which we recall are motivated by the types of nonstationarities we think 

might potentially occur in the data. We may think that the data may either be sta­

tionary or have local stationarity properties. Looking at Table (III .l), the researcher 

sees that the appropriate model components include flat windows multiplied by lags 

of the data. If the researcher does not know the precise form of the local stationar­

ity of economic relationships, it is appropriate to include model components with flat 

windows of different widths and locations in order to pick up such relationships. Since
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there are many possible widths and locations for such windows, we need to translate 

the theory into a practical application.

We recall that the appropriate model components have windows of the form:

f 1 if bi <  t <  e{
9m i =  (,,](0  =  \ (111.53)

f 0  otherwise
where 6; and et- stand for the beginning and end points of the window respectively. 

We use L3i to stand for the lag of the data included in the zth model component. 

Although it complicates notation, we find it essential to use the extra index m  to 

describe the window for model component i. The reason is that different model 

components will use the same window (for instance, lag 1 and lag 2  data).

To do this, we consider windows of width of powers of 2 up to the size of the time 

series. For instance, if the time series has 16 elements, we may wish to consider a 

window of length 16 and many different windows of length 8 , 4, 2 and 1. Since our 

simulated series has length 512, we can under this scheme consider up to 9 levels of 

windows since 29 =  512. There are many different windows of length 8 , 4, 2 and 1 

because we need to consider either all possible locations of these windows or some 

approximation to all possible locations. There is no a priori  reason to exclude from 

analysis intermediate window sizes of lengths such as 5, 9 or 3 but for tractability 

we must restrict the number of window functions in some way. We also would likely 

consider a large number of lags for each window, for instance, with a tim e series of 

512, it may be reasonable to include a dozen or more lags in the analysis. To illustrate 

that the procedure does not go astray when we choose an enormous number of model 

components, we will include fifteen lags. For example, if we consider a given window 

which is nonzero from points 1 0  to 266 we will want to multiply this window by the 

lag one data, the lag two data and so on . 7

7 One further technical point. A  window with say length 4 at lag 20 does not seem reasonable to
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In the construction of model components, there are several adjustable parameters 

to consider. For instance, we may not wish to include model components for every 

location at every level of windows; therefore, we may wish to include a model compo­

nent whose location jumps by a factor; we have found it convenient to set a constant 

factor and jump by a factor proportional to the window length. We also can include 

a parameter which considers only every &th lag after some lag m; this is useful in 

examining financial data.

In general, by restricting the number of possible widths and locations, there is 

a sense in which we reduce the possibilities of spurious estimates (because there are 

fewer model components). On the other hand, there is an efficiency cost to the larger 

approximating expansions for the regression relationship which are required when 

we have not included the “best” possible model components. The model we have 

proposed of ‘dividing by two’ provides a balance between these considerations.

For this example, we have selected 9 levels and 15 lags which results in 22,540  

potential model components {/ti}. The reason for the large number of model compo­

nents is that we have to consider many locations of window functions at each level; 

for instance we will want to include a window which is nonzero from points 1 0  to 266 

as well as for instance a window which is nonzero from points 8  to 264. Ordinarily 

with Box-Jenkins analysis, it is unusual to consider more than half a dozen lags and 

by definition there is only one window function so that our procedure here allows for 

many orders of magnitude of greater flexibility in model selection and estimation.

In the first iteration, we compute that the first chosen model component h° is 

gmoL3°y which is the hi that has lag 1 and whose window begins at the beginning 

of the sample and ends at the end of the sample. Table (III.2) shows the regression

us because we want som e sort o f overlap between the length o f the window and the lag considered. 
One im plem entation we have found to be useful in practice is to consider only lags up to  one fourth 
the length o f the window; thus, for a window o f size 32 we would not include a  lag o f greater than
8 in the analysis.



www.manaraa.com

38

Begin End Lag Regression Coefficient r 2

1 512 1 0.8968 0.804

1 512 2 0.7969 0.634

1 512 10 0.3248 0.105

230 485 1 0.906 0.427

130 257 1 0.922 0.314

429 492 13 -0.019 0.000

20 275 14 0.2113 0.025

Table III.2: Coefficient estim ates and the resulting r 2 for a few pos­
sible model components in the first iteration of the pro­
cedure as applied to a first order time-invariant autore­
gressive model. The procedure selects only the model 
component with the maximal ra. In this case the true 
model has the maximal r2 and is hence selected.

coefficient values for some of the (normalized) nonselected model components on the 

first iteration as well as the chosen one.

The value of the regression coefficient estim ated is 0.8968. We note that from 

the coefficient estim ate, we can determine that a model using only the first selected 

model component explains 80.4% of the sum of squares (or equivalently, energy or 

squared norm) of the data.8

After subtracting off the projection implied by the selection of the first coefficient, 

the variance of the residual is 1.01434 which is very close to the variance of the noise 

driving the autoregressive model. The residual is shown in Figure (III.6). Even if 

it is unlikely that a reasonable statistical procedure would include more than the 

first model component in estim ates, we continue for one more iteration to see what

6 In other words, a regression o f the data  on the first m odel com ponent would result in a  R 2 of
0,804. T he theoretical value o f R 2 is 0.81. The sam ple mean was subtracted before analysis.
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happens.

At the second stage the percentage of the sum of squares explained by both se­

lected model components is 80.95% which is barely more than the percentage of the 

sum of squares explained by the first model component alone. The value of the regres­

sion coefficient selected is —0.582496 (std. error is 0.15344) and the selected model 

component has lag 2 and a window which begins at point 456 and ends at point 

472. Since this spurious estim ate is captured by a model component with a relatively 

short window, this chosen model component adds little explanatory power. Based 

on our experience, we do not recommend including such short model components in 

the analysis, and if included, we recommend that they be weighted according to the 

criterion that we suggest (which has a theoretical basis) in order to minimize the 

effect of spurious estim ates.9

It is helpful to examine next a slightly different autoregressive (AR1) model with 

y( t )  =  — 0 .3 y (i — l)-b u (i) . We first generate a realization of y (f) with sample size 512 

by using a Gaussian random number generator to generate values of u (t) .10 We con­

sider 11,348 model components which correspond to up to seven lags and five levels. 

The first iteration leads to a model component of lag one with length of the whole 

tim e series. The coefficient estimate is —0.34288 with standard errors of 0.0415152.11 

Further iterations of the algorithm lead to spurious selection of a lag coefficient of 

—0.418486 at lag 4 between points 0 and 32 with a standard error of 0.139454. In

9 As discussed above and in Ch. IV, this criterion is to weight by factor inversely related to  the 
average o f the fourth power o f the window function for the m odel com ponent. For m odel com ponents 
w ith flat windows, the average o f the fourth power o f the m odel com ponent turns out to  be the inverse 
o f the fraction o f the tim e serieB covered by the window function (see Chapter IV, Eq. (IV .17)). 
This suggests that we should weight short m odel com ponents less in order to reduce the variance of  
estim ates.

10 W e subtract the sam ple mean ( —0.0207842) before analysis.

11 The standard errors are the OLS standard errors and therefore are conditional on the choice of  
m odel.
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Figure III.5: Data for autoregressive model of sample size 512 with 
AR1 parameter 0.9: y( t )  — 0.9y(t  — 1) +  u (i)
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Figure III.6: Residual after subtracting oIF the first projection from 
the first order autoregressive model with f3 =  0.9. Sta­
tistically it is close to white noise.
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terms of additional R 2 added at an iteration,12 the first m odel component generates 

0.118 whereas the second model component generates 0.0152 which is substantially 

lower. The stopping rule we propose in Ch. VI would stop the algorithm after the 

first iteration; the coefficient of the second lag in the autoregression is —0.0363728 

with a standard error 0.0442195.

We can prove (see Chapter IV) that if flat windows with the length of the tim e 

series are included in the analysis, in the large sample lim it we (with probability 1) 

will select only flat windows over the length of the tim e series if the true model is 

stationary.13

Whereas our m ethod seems in a sense to  select the correct m odel when the un­

derlying model is stationary, conclusions drawn from use of the local weighted least 

squares (or ‘kernel’) estimator:

g(t  -  s ) y ( s ) y ( s  -  l )  , TTTr^
m  ~  { ]

(where g is a ‘kernel’ function) are more problematic because the properties of esti­

mates depend on bandwidth. A Gaussian kernel was used in the analysis and, after 

experim entation with bandwidth, a Gaussian with cr =  5.0 was chosen.14 Estim ates

13 We use R 2 instead o f r 2 because on the second iteration we wish to  exam ine the to ta l explanatory  
power added to the regression.

13 We m ake the (weak) assum ption that the weights used in com puting r 3 do not weight shorter 
m odel com ponents more.

14 T he convolutions in the num erator and denom inator were com puted in the tim e dom ain using
a kernel which sum s to  1 at each point. T he sam ple m ean was subtracted from the d a ta  before
analysis. T h e data  used to generate the kernel estim ate was from a  different random  sam ple than
that used to  generate F ig. (I I I .l) . Thus, the ends o f the sam ple are corrupted by sm all sam ple
bias. If we assum e (3 is constant over tim e under the null, we can com pute approxim ate confidence
intervals for Q ( t )  using standard error estim ates ■ , „  p‘ = .  T his follows since:v A rE .stt- 'M -i)1

(4.W -  f>? -  - W  - 1>. (III.65)
[ f S s f 1 -  9)y(s -  !)a]

and t ( s )  is assum ed to  be w hite noise and we consider a  large sam ple approxim ation. T he theoretical 
value o f cr, =  1 was used in constructing confidence intervals where we m ultip ly  a^ by 1.96. An
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Figure III.7: Kernel estimates for first order autoregressive model.

are shown in Figure (III.7). Fig. (III.8) shows estim ates with a  =  20.0.

To summarize what we have learned from the figures, we can see that one of the 

issues is that our answers seem to depend on the choice of bandwidth or a smoothing 

parameter. A similar issue arises in the spectral analysis of nonstationary tim e series 

data; we could use ‘rolling’ estimates of the spectrum which compute estimates for 

only L <  T  points at a time but then our estimates depend on L. There therefore 

seem to be benefits to mixing effective window widths depending on the observed 

properties of the time series; Ch. VII on time-frequency spectral estimation reviews 

some ways to do this in the frequency domain whereas the thesis focuses on the time 

domain.

We point out that there are some other new methods which might be applicable 

to the analysis of nonstationary economic and financial data. In general, our expe­

rience is that more sophisticated methods such as the Matching Pursuit algorithm  

[131], wavelet packet methods [47] [44] [45] [46] and wavelet transforms [52] [138]

approxim ate value of T  o f 2cr was used in constructing standard errors o f j3.
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Figure III.8: Kernel estim ates for first order autoregressive model with 
a wider bandwidth.

also achieve uneven performance when the data generating process is a stationary 

stochastic process. We do not expect the reader to be familiar with these methods 

which are introduced and reviewed in Chapters VI and VII. The basic idea of these 

methods is to work with different sorts of representations analogous to the spectrum  

except that the estimates vary over time.

Switching Autoregressions

We next consider a simple but fundamentally nonstationary process. The simple 

model we consider is:

y(t)  =  i 3 ( t ) y ( t - l ) + u ( t )  (111.56)

f~ /?o  if T0 <  t <  Ti
m  = a

{ po otherwise
(111.57)
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where « ( i)  is noise and — 1 <  /30 <  1. T0 and T\ denote the beginning and end points 

of a structural shift in which the sign of the autoregressive parameter /?(t) changes. 

We consider a simple example in which /?o =  0.9, Ta =  0, T\ =  256, T  — 512. The 

data are shown in Fig. (III.9). Autoregressive estim ates for the data are:15

y{ t )  =  0.0788397 y ( t  -  1)

(0.044063)

y{t)  =  0.0145828r/(f — 1) +  0.817745 y (£ — 2)

(0.025453) (0.025456)

y{t)  =  —0.00361366 y( t  -  1) +  0.817434 y ( t  - 2 )  +  0.022267y(i - 3 )  

(0.0441837) (0.0254572) (0.0442003)

so that a researcher would probably select an AR(2)  model out of the class of autore­

gressive models. We point out that if our model components are only flat windows 

with the length of the tim e series, we would likely select a model with only the second 

lag coefficient so that there is a sense that, even within the class of stationary time 

series models, our procedure seems to be a reasonable method of model selection.

Given the form of the model, it is reasonable to use the appropriate model com­

ponents for locally stationary processes which, as noted in Table (III .l), include flat 

windows multiplied by lags. Hence, we again use flat windows and choose 5 lags and 

5 levels of windows for a total of 8106 potential model components. After 3 iterations, 

our estimates are:

15 We have subtracted the Bamplc mean o f 0.0533404.
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y( t )  =  —0.003332474 y(t  -  2) +  0.948662y ( t  -  l ) l t e[255,5n]

(0.0432604) (0.0466964)

—0.932788 y(t — 1) lt€[o,256]*

(0.0473276) (III.58)

Fig. (III. 10) shows our estimates of pi  as a function of time. We note that in the 

procedure we have spuriously selected a second lag at the first iteration; this does 

not happen if p 0 is closer to zero as we analyze in Appendix H. The reason we have 

incorrectly picked a model component is that the second autocorrelation is constant 

across the tim e series; as the size of the data grows, we will continue to pick the 

incorrect model component if |/?q| is larger than a critical value we derive; however, 

the coefficient on this incorrect model component will get smaller as the sample size 

increases.

By comparison, we show in Fig. III.11 a simple ‘weighted local least squares’ esti­

m ate of the first lag coefficient. Our method produces more accurate estimates than 

either the local least squares method or ordinary autoregressive model precisely be­

cause it allows the size of the effective ‘window* to adapt based on the local properties 

of the time series.

Smoothly Time-Varying Autoregressions

In many cases, structural change may be slow rather than dramatic so that autore­

gressive parameters may change slowly with tim e rather than abruptly. An example 

of a model with slow structural change is:

y ( t )  =  i t ( t ) y ( t  -  1) +  u(t) (III.59)
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Figure III.9: Data for the switching autoregression with parameter 
A> =  - 0 .9  and T0 =  0, Ta =  256.
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Figure III. 10: Data for the switching autoregression with parameter 
Ad —0.9 and To 0, T\ 256.
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Figure III. 11: Rolling least squares estimates for the first lag coefficient 
with a window of length 30.

(l-«d£
7 (f) =  7 o e (III.60)

where u(t) is a noise term. The smoothness of the gaussian function presents non­

trivial problems in identification when it is not a ‘priori  known that the model is of the 

type (III.59) (III.60). We consider a simulated sample of size T  — 512 with 7 0  =  1, 

to =  200, Aq =  20. The simulated data is shown in Figure III. 12. The autocorrelation 

function of the data is shown in Figure III. 13. The reason the autocorrelation function 

shows little dependence is that the parameter variation in 7 (f) is well-localized.

Since the model is of slow but mean-reverting structural change, Table (III.l)  

suggests the use of model components with smooth window functions such as Gaussian 

functions. Here, we first suppose that theoretically we expect local stationarity so, 

based on these theoretical considerations, we use the wrong set of model components. 

We perform an analysis with flat windows for 5 levels and 10 lags for a total of 14, 681 

potential model components. On the first iteration, we pick a model component which
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Figure III. 12: Simulated data from the smoothly varying autoregressive 
model with A0 =  2 0 , 7 0  =  1 .0 , to — 2 0 0
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Figure III. 13: Autocorrelation function of the smoothly varying au­
toregressive model. Since only part of the time series 
has nonzero autocorrelations, the autocorrelation func­
tion indicates only weak dependence in the data.
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Figure III. 14: Graph of the smooth time-varying autoregressive param­
eter 7 (f) versus estim ates with flat windows.

a flat window from point 167 to 231. Our estimates are compared with the underlying 

population parameter in Fig. (III. 14). The estim ate we get has a coefficient of 

0.746239 and a standard error of 0.0953892. On the next iteration, we picked a lag 3 

component (from 387 to 419 with a coefficient of —0.542851 and a standard error of 

0.137286); the percentage of additional variation explained as a result of including a 

second model component is only 2 .6 % as opposed to the 1 0 .6 8 % gained by the first 

model component on the first iteration.

Now, we turn to the case in which we include the correct model family in our 

analysis. As we reviewed above, this involves use of model components with smooth 

windows such as a Gaussian:

gm(t) =  e 3‘nv (111.61)

where the parameter cm is set as 22k where k is the level of the window 1 <  A: <  

where is the maximum level. In this case, we include 7 lags and 5 levels. We
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Figure 111.15: Graph of the smooth time-varying autoregressive param­
eter ^ (t) versus estimates with Gaussian windows.

naturally pick a first order Gaussian window on the first iteration which matches the 

true parameter quite well; results are shown in Fig. (111.15). Our estim ate is centered 

at the point 2 0 1  which is remarkably close to the true value of 2 0 0 ; our point estimate 

on the model component parameter 7 0  is 0.858678 (standard error of 0.115864) which 

is below the true value of 1.0. If we had continued the analysis, we would have picked 

next a lag 4 window which adds only 1.2% of explanatory power, 16

If one were to estim ate a Box-Jenkins autoregressive model (spuriously since the 

true model is not  time-invariant), three possible estim ated equations would be (stan­

dard errors of estimates are in parantheses):

y ( t )  =  0.139798 y( t  ~  1) (111.62)

(0.0440702)

16 The stopping rule we propose in Ch. VI would have ended the procedure after the first model 
com ponent was selected.
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y ( t )  =  0.127281 y{ i  -  1) +  0.0894933 y ( t  -  2) (111.63)

(0.0440702) (0.0440702)

y( t )  =  0.122991 y ( t  -  1) +  0.0834274y( t  - 2 )  +  0.476624y ( t  - 3 )  (111.64) 

(0.0441996) (0.0443783) (0.44202)

From the results, a researcher would identify a first or second order autoregressive 

model w ith weak correlations whereas the true m odel has a very strong but well- 

localized correlation structure. This exam ple points to the danger of using stationary 

tim e series models blindly on nonstationary data.

Kernel estim ates of the first autoregressive parameter are also difficult to interpret. 

We define the kernel estimate:

a  i )  fTTT c c \

A W  S . * - ) » ( * - ! ) >  ( I I L 6 5 )

We let g  be a Gaussian kernel with variance a 2. The parameter estim ates for 

for one values of a  is shown in Figure III.16. Estim ates can either be too sm oothed  

out or too choppy depending on choice of bandwidth.

Lag Switching Autoregressions

As one additional exam ple, we consider another type of nonstationarity which is 

natural in economic and financial tim e series but for which it is inconvenient to use 

m ethods such as kernel regression. This situation is one in which lag relationships 

change over tim e. An appropriate model to capture such phenomena is:

y ( 0  =  Aj y ( t  ~  7(*)) (III.66)



www.manaraa.com

52

0 5

0

-0 5

400200 300

Figure III.16: Kernel regression estim ates with a Gaussian kernel and 
a  =  50.0.

7(0 = 7 o + 7 i(0  7o e Z' (III.67)

7i (0 = <

f 0 i <  To 

1 To < t <  Tx (111 .6 8 )

I 2 T0 <  t <  T
We simulate data with /3q =  0.7, 7 0  =  1, To =  300, T\ =  400, T =  512 (see Figures 

111.17 and 111.18).

If we were to estim ate ordinary autoregressive models on the simulated data, we 

would find:

y( t )  =  0.203731 y ( t  -  1) (111.69)

(0.0432854)

y ( t )  =  0.128682y(t -  1) +  0.37132y ( t  - 2 ) (111.70)
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Figure III.17: Simulated data for the lag switching autoregressive pro­
cess with po — 0.7, 7 a =  1, T0 — 300, Tx — 400, T  — 512.
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Figure III.18: Autocorrelation function for simulated data for the lag 
switching autoregressive process with Pq =  0.5, 7 0  =  1, 
T0 =  300, Ti =  400, T  =  512.
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Lag Coefficient Std. Error

1 0.0816962 0.0437613

2 0.308413 0.043828

3 0.0782034 0.0438642

4 0.1427 0.0438529

Table III.3: Estimates for an AR(4) model for the lag switching 
model.

(0.0410522) (0.041191)

y( t )  =  0.0946797y ( t  -  1) +  0.359532y(f -  2) +  0 .0 9 1 7 5 6 2 ^  -  3) (111.71) 

(0.0440274) (0.0413369) (0.0441152)

Estimates for two higher order models are shown in Table (III.3) and Table (III.4). 

The researcher who estimated an autoregressive model for this dataset would probably 

spuriously pick a high order model (the sixth lag is statistically significant with a t 

statistic of 5.577).

In this case, the model is locally stationary, but due to the shifts in the lag 

relationships, we might reason that observed structural change would be rapid but not 

immediate. As summarized in Table (III .l) , this suggests model components which 

have flat windows with smooth Gaussian edges. We consider such model components 

up to five lags and five levels. Estimates after three iterations are shown in Fig. 

(III.19).17 After the third iteration, there is a large drop in explanatory power, from 

9.5% explained to 1.7% additional variance explained.

17 t-atatistics for the lag coefficients are: 10.79, 14.261, and 8.129 after three iterations.
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Lag Coefficient Std. Error

1 0.107812 0.0434284

2 0.322125 0.0431824

3 0.136291 0.045185

4 0.157851 0.043233

5 -0.187147 0.0437018

Table III.4: Estimates for an AR(5) model for the lag switching 
model.

06
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Figure III. 19: Estimates of /3lt /?2 and /?3 for the lag switching autore­
gressive model. The first window starting at T  =  0 cor­
responds to lag 1 , the second window corresponds to lag 
2 and the third window corresponds to lag 3.
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Summary

In this chapter, we have reviewed the construction of model components and other 

issues relating to implementation of our method and have provided “proof of concept” 

that on certain model problems, our approach leads to some insight into the nature 

of the data generating process. In the next chapter, we provide some theoretical 

justifications for the use of the method.
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C H A P T E R  IV

T H E O R E T IC A L  A N A L Y SIS

The purpose of this chapter is to examine some of the theoretical properties of our 

procedure. Although classical statistical methods may seem conceptually incompat­

ible with nonstationary tim e series models, we shall attem pt to make some general 

statements about our method in terms of classical criteria. In terms of the basic 

equation:

vi*) = - i)  + ei(0. (W-1)
3 = 1

we analyze the properties of estimates from two broad classes of tim e series models:

•  Fraction Models. Time series models with parameters which are functions of 

the fraction of time rather than time. In this case, the /3j(t) =  &j(£) where T  

is sample size and bj is a measurable function of Thus, for example, (3j(t) 

might assume one value for one half of the tim e series and another value for the 

other half.

•  Replication Models. Models with periodic data generating processes. In this 

case, we can consider possibilities such as: (1) (3j(t +  r K ) =  for some

integers r  and K  where K  is the period of the data generating process; (2 ) 

there are multiple replications from the same nonstationary data generating

57
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process, a case which has been used for analysis of estim ators of nonstationary 

m odels in fields outside economics.

Both broad classes of nonstationary models have different theoretical uses. Anal­

ysis of fraction m odels provides information on what will occur if we stretch out the 

data generating process so that we assume we have locally an infinite number of ob­

servations. Thus, from analysis of fraction models, we learn what properties of model 

components and estim ation procedures are good as we increase the amount of data.

Analysis of replication models provides information on what will occur if we have 

very little data locally, but we can make inference by comparing two very similar 

processes. W hile replication models might at first glance seem to be only useful for 

engineering and medical processes, there are economic applications of such models. 

For instance, we may want to estim ate the tim e series behavior of options prices as a 

function of tim e to m aturity and it may not be unreasonable to assume that different 

options contracts exhibit very much the same statistical properties so that we can 

learn about local properties of the data by averaging across contracts.

We now outline the work to be done. We begin by reviewing some theoretical issues 

behind both types of models which will be useful to researchers; these theoretical 

issues include conditions on data generating processes and choices for fam ilies of 

m odel components.

Our next step is to prove that, under technical assumptions, our procedure con­

verges in the sense that, as we increase the number of model components when there 

is an infinite amount of data, we approach the underlying model. The convergence 

proof is a probabilistic interpretation and slight variation on the proofs for the con­

vergence of matching pursuit expansions for nonorthogonal expansions of functions in 

terms of waveforms due to [131] and for convergence of projection pursuit regression 

by Jones [112],
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We then proceed to examine whether the assumptions behind the convergence 

proofs apply for the types of models we consider. The primary technical machinery 

here is the use of mixingale theorems due to McLeish [135] and Andrews [6 ]. Stochastic 

integrals are also used to approximate the properties of estimators. We include a 

review of mixingale theory so as to make this chapter as self-contained as possible. 

The chapter concludes with a synopsis of the main results.

Characteristics of Models

In this section, we review some of the theoretical issues and assumptions for the 

data generating processes and the choice of model components. As we shall discuss 

later, many specific theoretical results hold in a broader setting than described in this 

section.

D ata G enerating Process

For the data generating process:

v (4) =  j )  +  ei ( 0 > (IV -2)
3  =  1

we assume that ei(t) is serially independent and identically distributed. We assume 

that:

£ (e j ( i) )  =  ff2 < oo (IV.3)

and that ei(f) has ‘more’ than four bounded moments.

We also assume that process generating y  also has more than four bounded 

mom ents:1

1 What really is required is that y(t — l)e(t) has more than two bounded moments. We have used
the Cauchy-Schwartz inequality.
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sup E ( y ( t ) 4+6 ) <  oo (IV .4)
t

for some S > 0. We note that this assumption places implicit restrictions on the types 

of admissible functions f3j(t) in Eq. (IV .2 ) . 2 

Fraction M o d els

We will discuss the choice of model components in the context of both fraction 

and replication models. For fraction models, we have:

m  =  h  ( £ )  civ.®)

so that in terms of Eq. (IV .2):

y( t )  =  ^ / 3 j ( t ) y ( i - j )  +  e i(t)

= E ‘i(^)»(*-i) + 'i(0- (iv.7)

We assume that 3 t—> tj(s )  is a well-defined (measurable) and square integrable 

function on the interval [0 , l ] . 3

Given our assumptions, 6y(^) admits an expansion of the form:

=  X ) +  <*(*) (IV -8)
r=l

where: 4

3 For instance, this assumption rules out a regression equation with a unit root such as:

y ( t ) = / 3 y ( t - l ) + € 1(t)  (IV. 5)

with P = 1.

3 The notation s t-* kj(a) means bj is a function of s.

4 A technical aside: the function bj is an element of L3[0 ,1] and this footnote explains the sense
in which the expansion in Eq. (IV.8) converges as R —* oo. We will discuss both cases where the
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( 1 ) v* are constant coefficients;

(2 ) e£(.s) is a basis function (the ej(a) need not be orthonormal; in fact, we will 

relate the e£(s) to the window functions used in model components).

(3) £3 (3 ) is the approximation error from: (a) truncation error -  using only R  

terms in the expansion, and (b) norm convergence as R  —» 0 0  need not imply uniform 

convergence.

Thus, we may consider:

y(0 = 12 hi ( ^ )  y(l ~ 3) + ^(0  

= (£) y(* — i)  +  ea(0
j—lr=l /

K
=  Y2 a khk{t)  +  ea ( 0

fc=i
( I V .l l)

where ea(f) incorporates the approximation error in using the approximating functions 

eI for the lag functions /3j(t).E In this case, the a k are the appropriate v* and the 

model components hk(t)  are:

el arc orthonormal and cases where they are not. This added generality is im portant because the 
window functions in our analysis (e.g., Gaussian windows or flat windows) are rarely orthonormal.

The sense in which Eq. (IV,8 ) is true is that, given a  complete set of basis Fucntions
(which as noted in Eq. (IV.8 ) depend on j ) ,  there exist coefficients such that:

w
lim ||&j -  *Ver | |a =  (IV-9)

JY —♦ DO 1r=l

The result holds as long as for all bj £ L3 [0, l], we have:

^l|fr,-||i < f ; i < t ; . ^ > | a < 5 | | i > | | 2 (IV.10)
r = l

for some A  >  0  and B  <  0 0 ; in this case, the er form a frame of L3 (c.f. [2 1 1 ] [19]). The eT need not 
be linear independent. When the er are an orthonormal basis, they satisfy Eq. (IV. 10) with A =  1 
and B — I.

6 This approximation error comes from the 6 3  in Eq. (IV.8 ).
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ht{t) =  e“  ( | ; )  y(t -  j k)

= S* ( I)  !/(* -  J») (IV.12)

where jk  is the lag associated with term k in Eq. (IV.12) and r* indexes the expansion 

function associated with term k. Eq. (IV.12) suggests that to analyze the fraction 

model theoretically, we need to make the window functions gk for model components 

hk functions of the fraction of tim e rather than tim e itself.

We assume that the associated window functions gk are normalized so that:

? S h ( ? ) f = L ( I V - 1 3 )

This normalization assumption is made for consistency with the underlying assump­

tion that the window function is a functic - of the fraction of time and hence ‘grows’

as sample size is increased. The window functions gk technically depend on sample

size T\  we do not indicate the dependence at this point to simplify notation.

To illustrate the effect of the constraint in Eq. (IV. 13), we show in Fig. (IV .1) 

an example of a normalized flat window where T  =  512, bk =  0.25, ejt =  0.50 in Eq. 

(IV .14). Thus, a flat window is defined for technical purposes as:

9k ( y )  =  W „ ]  ( ^ )  %/efc _  bk ( IV-14)

where bk and ejt are the fractions for the beginning and end of the window gk-6 We

6 We note that for the flat window described by Eq. (IV .14):

= = (iv.is)
as required by Eq. (IV. 13).
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Figure IV. 1 : A normalized flat window (f is on the horizontal axis).

note that when bk =  0  or the beginning of the tim e series and e*. =  1 or the end of 

the tim e series, the window functions are the same as are used in the time-invariant 

autoregressive Box-Jenkins model.

We also assume that all window functions are bounded and satisfy:

< o °  ( i v j 6 )

We can verify that Eq. (IV. 16) holds for the choice of constant windows in Eq. 

(IV .14) as long as the length of the window is a fraction of the length of the tim e 

series. 7 In fact, we will show that, in selecting a model, it may be desirable to weight 

r 2 (simple correlation) by some function of the inverse of:

7 To see this, we note that (using Eq. (IV .14)):

r ^ h G O I  = T  S  ( t )  (et -  6*)3 “ (IV‘17)

For this to be finite, (c* — bk) must be bounded away from zero.
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(?) r <iv-is>
such as —t= ,

\A 1

To effectively approximate the process generating the data, the window functions 

in our analysis must lie in the same class as the lag coefficients so that we require 

that there is at least one way of expressing the true lag functions 0 j ( t )  in terms of 

the window functions we include in our model components.

R ep lica tio n  M o d e ls

For replication models, we may wish to consider: (1) situations in which the /3j( t )  

are periodic with period K \  or (2) situations in which the data generating process on 

the interval [1 , K \  is repeated many times. In the former case:8

y ( t )  =
3 = 1

=  E  a j  hj{t)  +  Cl(t) (IV. 19)
3 = 1

so that (as we have already reviewed in Ch. I ll) , the model components we use are:

/.,(() =  Tj ( t  -  [ t ^ i ]  K )  y ( t  -  j ) .  (IV .20)

In the latter case where the data generating process is repeated many times, we 

have for each replication that:

j
y ( 0  =  ]£&■(* +

3=1

8 Wc recall from Ch. I ll  that the notation [z] is used to refer to the integer part o f z.
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j'= i

= X » i ( 0  + '.W (iv.21)
j=i

so that we use model components:

'‘i«  = ’V(ib(i-j). (IV.22)

In such a situation, there are no regularity conditions on the window functions for 

the model components hj(t )  other than that they are bounded. We receive a little  

bit more insight into useful conditions by considering continuous tim e models such 

as are commonplace in finance. In such cases, we require that the processes have 

mean square continuous sample paths with probability one on the interval [1,/C]. 

Continuous tim e models are attractive because they allow for irregularly spaced data, 

natural stock/flow distinctions and, in finance, follow naturally from the continuous 

time theory. A review of the use of continuous time models in econometrics can be 

found in [2 2 ].

An example of such a model is a nonstationary continuous tim e A /2(l) process:9

d Y { t )  =  - X t W Y i t f d t  +  a d W
C O

T .  otj e j(i) Y( t )d t  -f crdW 
i=l
30

=  — ^  a j  hj(t) dt +  crdW 
i=i

(IV .23)

where we have assumed that Aj(t) is measurable and square integrable (on the interval 

[0,/C]) in moving from Eq. (IV.23), hence suggesting that in the lim it of continuous

9 There is a theory o f such equations (c.f. [115], p. 354-363) and it is known that w ith mild  
sm oothness conditions on Q i(t), on any finite interval the solution has sam ple paths w ith probability 
1 which arc continuous.
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tim e, we need the measurability of windows with respect to time t in the same way as 

in the fraction model we required measurability with respect to the fraction of time. 

Clearly, when a time series is discrete and the interval is finite, there is not an issue 

of measurability with respect to tim e, hence the lack of need for formal regularity 

conditions. Nevertheless, in spirit, the continuous time lim it suggests that our model 

components should not be too ‘short’.

Convergence Proof

In the previous section, we have made specific technical assumptions on types 

of models. In this section, the goal is to prove that our procedure converges in the 

sense that, if we keep on adding model components, we approach the underlying 

model. Since the models described in the above section are different, it is useful to 

define a broader umbrella of models which encompasses the models in the previous 

section and then explain precisely how the models in the previous section fit in. 

The use of unifying notation in this section has an added advantage (besides not 

having to prove the same theorem twice) in that the theorem seems applicable quite 

generally to estim ation of various forms of nonlinear regression procedures including 

state-dependent models in a time-series context as well as nonstationary tim e series 

models outside the scope of this thesis such as those with time-varying cointegrating 

relationships.

The general model we will use has the following elements:

•  D a ta , The dependent variable is denoted by yt where t indexes the observation. 

The observed regression variables (which will be lagged yt in our context) are a 

vector denoted by xt. We assume there are J  elements in the vector x t and the 

j  th element is indexed by x\.  There is also a vector of auxiliary variables v t 

In our case, vt denotes time or some related variable; in other models, Vt might
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represent other state variables.

•  R eg ress io n  F u n ction . We assume there is a regression function f:

f ( v i t x 0  =  E (y t \Vt =  v tJX t =  x t ) (IV .24)

where X t  is a vector of explanatory variables indexed by t and Vt is a vector of 

auxiliary variables and that this function is of the form:

f ( v t , x t) =  £  ci (w0  x t (IV .25)
j=i

This assumption may seem strong but, if the conditional expectation is not

given by Eq. (IV .25), estim ates will converge to the best projection of the form

Eq. (IV .25) under the regularity conditions described below.

• M o d e l C o m p o n en ts . We assume we have a family of model components 

indexed by k:

hk(t) =  gk(vt) ■ x*t (IV .26)

where gk is a window function. The dot in Eq. (IV .26) allows the model 

components to consist of a (finite) sum over many different variables (such as 

was necessary for the distributed lag model in Ch. III).

We now show how our two classes of models fit into this framework. For fraction 

models, v t ~  ^  (e.g., vt is the fraction). When relationships are locally stationary so 

that the 0 j( t )  are flat, it is also possible to let the vt index the particular stationary 

regime; thus, for instance, we may have for some fractions bo and e0:

f 0  b0 <  ^ <  e0 
v t = <  T . (IV.27)

{ 1 otherwise
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In the fraction model, the x3t variables are the lagged j  data generated from yt. 

Thus, the cj(vt) functions are the autoregressive functions bj ( 5;), the gk(v t) functions 

are the window functions gk used in the analysis, and the hk(t) are the model 

components.

For replication models, vt =  t — K  if the data generating process is periodic 

with period K  and v t =  t  if we are considering repeated runs from a data generating 

process with length K .  In such cases, the C j ( v t )  are the appropriate autoregressive 

functions and the g k { v t )  are the window functions.

Given models of this class, the next step is to define some basic rules for model 

selection which narrow down the class of procedures we will consider. These technical 

assumptions include:

In n er  P r o d u c ts . The convergence theorem is a Hilbert space convergence the­

orem which holds more generally (see Appendix A for a review of the relationship 

between Hilbert spaces and probability theory; Brockwell and Davis ([33], Ch. 2) 

use Hilbert space methods in tim e series). The inner product is defined (in its most 

general form) as:

£(/ff) = J  f ( x , v ) 9 (x ,v )d f i (x ,v )  (IV .28)

since /  and g are functions of x and v. Here, p{dx, dv) is the measure for x and v. 

The symbol £ is not in general an expectation operator. For g =  / ,  Eq. (IV .28) 

defines a norm on a Hilbert space Ti:

II/IIk = £(/2) = /  (IV.29)
We now define a number of specific cases of inner product (IV .28) for the special 

models we consider. For discrete replication models, v t is tim e or tim e modulo a
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1 K t
£ ( f  g) =  f ( x , v ) g ( x , v ) d p i,(x)dv

n  v = l  J

= f(x>v)9(v>v)y (iv.3i)

For the fraction  model, we define the inner product for two separate cases. In 

the first case, we assume a finite number R  of regimes (because there may be several 

structural changes), indexed by r, which each cover a fraction i/(r) of the sample. In 

this case, Eq. (IV .28) becomes:

£ ( / d) =  £  /  /(®t>v*)ff(a!t .uO*'Cr ) 1{t€r}(»')^r(a)
r = I  J

-  (IV .32)
r = l

where there is a separate (stationary) joint distribution function fir(dx) for each r. We 

use the terminology Er to refer to the expectation taken in regime r. W ith an infinite 

amount of data, the definition of such a stationary distribution function is usually 

achieved through a spectral representation (c.f., Appendix A). This representation is 

useful because we have some theoretical results to be reviewed below for models with 

a finite number of stationary regimes.

We also define another special case of Eq. (IV.28):

1 T f
£ { f 9 )  =  Jim  /  f { x t t v t)g (x t ,v t)dfit(x)

T  —*oo I  J J

10 In the continuous case, the sam ple paths o f x  are m easurable by assum ption (as we have pointed  
out above, this is not restrictive for models in finance). Here, v( =  i  or tim e m odulo a  period:
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=  J im (IV .33)
T“*°° 1 t=i

We can relate this inner product to those of special Hilbert spaces called Hilbert 

spaces of almost periodic functions or continuous functions with finite average squared 

variation which were developed by mathematicians Bohr and Bochner and others (c.f. 

[4], Vol. I, Sec. V, pp. 132-138; [178], pp. 254-260) and are related to the spectral 

representations of stationary stochastic processes. There are a number of technical 

issues such as the definition of a zero element. These issues are reviewed in Appendix 

N.

We can also define inner products (in the sense of Eq. (IV .28) which do not 

involve taking expectations. For instance, we can define for any T  (including in the 

limit T  —>■ oo):

£ ( /p )  =  i  £  / ( “ *> (IV .34)
1 (=i

M o d e l c o m p o n en t se le c tio n . Let the estimates at iteration k be y k (where 

y° =  y).  We define m k =  y k_1 — y k so that m k represents the terms added to the 

regression estim ates at iteration k. We assume at each iteration k:

£ ( (m k)2) >  a su p £ ((m * )2) (IV .35)
flee

for some number a  (E ( 0 , l ] .n The term m k represents what y k_1 — y k would have 

been if we had used the model component hg instead of the one we chose hk. The

set C may be uncountable; as an example, we show in Ch. V that there are cases

in which we can select model components by nonlinear regression. We note that Eq.

11 W c note that £ ((m fc)3) is defined by Eq. (IV .29). The number a  m ay be less than one if we use 
suboptim al procedures (such a3 choosing m odel com ponents which m axim ize r 2 instead o f additional 
•R3) in selecting the next m odel com ponent to include in the model.
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(IV.35) allows us to select models which are suboptimal; this condition allows us to 

use statistical weights in model selection instead of always choosing the maximum.

Com pleteness. We assume that if the regression function f ( x , v ) £  77, then the 

span of the model components in the analysis is 7 i .  This condition can be difficult to 

verify in practice since the model components in the analysis depend on the regression 

function /(s ,t> ). It is thus useful to provide alternative conditions for completeness. 

In Appendix 0 ,  we show that (under regularity conditions) if the window functions 

gk(v) for model components containing each explanatory variable xJ span the space 

containing all the possible C j ( v )  (c.f,, Eq. (IV.25)), then the resulting set of model 

components is com plete . 12

Projection Operators. At any stage of the procedure, we need to compute 

m k — y k~l — y k. To do this, we decompose:

y k~l =  Pky*-1 +  (I  -  Pfc)/"1 

=  m k +  y k

(IV.37)

where P*. is the projection operator at iteration k. For our procedure, this is captured 

by the predicted value from a linear regression of the residual y k_1 on all previously

12 Specifically, we assum e that, for each explanatory variable, there exists a  countable subset of 
window functions W  which are incorporated into m odel com ponents in the analysis such that:

^ I M | a <  £  I <  ci>9k >  I3 <  £ |k j | | a (IV .36)
W

for som e A  >  0 and B  <  oo and where the inner product is weighted by the measure dfi(v).  In 
this case, the gk form a  frame o f L2 (c.f. [211] [19]). In our analysis, the vt  either take on a finite 
number o f values (for the discrete replication m odel) or take values on a finite interval ([0, l] for the 
fraction m odel and [0, K ] for a  continuous tim e replication m odel). In such cases, the coefficient 
functions Cj lie in separable spaces so that they arc spanned by a countable set o f window functions. 
The measure dp(u) need not be uniform for the discrete replication m odel because regimes m ay be 
of different lengths.
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selected model components /iJ for j  <  k and the newly selected model component hk. 

Other definitions of the projection operator P  ̂ are also consistent with convergence. 13 

The properties of linear projection operators on Hilbert space and the relationship 

with regression analysis is reviewed for instance in ([33], Ch. II) ([90], pp. 113-4) I

We now are ready to proceed to a proof.

T h eo rem  1 Assume: 1. the regression function f ( x , v )  is measurable with respect to 

an inner product P  generating the values of x and v .

S.

£ ( f ( x , v ) 2) <  oo. (IV .38)

3. We pick a set o f  model components hk(x ,v )  which at each iteration k satisfy 

Eq. (IV. 35) so that:

£{{rnk)2) >  a s u p £{{m ^)2) (IV .39)
eec

for  some fixed a  G (0,1]. Here, mg =  Pk,sfk~l is the projection on the residual 

induced by the choice o f  a model component hg at iteration k. This projection may  

for  instance be against the span of all model components chosen before stage k and a 

new model component hg.  We define m k to be m k. The supremum in Eq. (IV .39) is 

taken with respect to hg  G C, their induced projections Pktg and the projections Pjtj ,  

j  <  k , induced by the selected model component h* at iteration j  <  k.

4- The set of model components is complete in the sense that f  G H  and the span 

of the set of model components is Ti.

13 For instance, convergence still occurs if we define the projection operator to he the linear pro­
jection o f the residual against the span o f the chosen m odel com ponent alone. Thus, in a practical 
sense, this added generality may serve to justify  a broader class o f procedures such as researchers 
are indeed likely to use in practice; for exam ple, it allows for the standard o f subtraction o f trends 
and seasonal term s from data before analysis (but, perhaps constructively, suggests that the residual 
from m ay need to be detrended or deseasonalized itself).
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5. Each member of the set of potential model components is measurable with 

respect to P  and satisfies:

0 <  £(h(x ,  u)2) <  oo. (IV .40)

6. No model component is correlated (with respect to P )  with the error term for  

the regression function:1'1

£( hk( x , v ) e ) ^ 0  (IV .41)

fo r  all hktz C. The error term e has nonzero variance and is independently and iden­

tically distributed.

Given these assumptions, the procedure converges to estimates:

/ ( * , « ) = (I V-42)
k

in the sense that:

lim £  ( f ( x , v )  -  J 2  = 0 .  (IV .43)
N^°° \  k=i /

P roof: This proof follows Jones [112] as well as its translation by Mallat and Zhang

[131] into the context of their matching pursuit decomposition. If the data are gen­

erated by the model:

Vt =  f ( v t , v t) +  et (IV .44)

where et is independently and identically distributed and £ ( f ( x , v ) e )  =  0 , then:

£ { y ?) =  £ ( f )  +  £(<?) =  £ { f 2) +  ^  (IV .45)

14 In our case, this im plies no contem poraneous correlation.
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where er2 is the variance of e(. By multiplying Eq. (IV.44) by any model component 

A*, taking “expectations” , and applying Assumption (6 ):

£{ hky)  =  S{hkf )  +  £ (k ke) =  £ { hkf ) .  (IV.46)

We can thus restrict our attention to the analysis of /  and prove that the residual 

of the regression function converges to zero.

At any stage j  of the procedure, we pick a model component h3 and as a result 

add explanatory power m 3 to the model. By the definition of m 3, we have for any 

choice of k:

/ = £ > * + / *  ( i v - « )
i=l

where f k is the residual at stage k. We define f °  =  f .

The proof follows the following broad outline:

• Bound £ ( f N )2 for N  large. This follows since the residual from the procedure 

is monotonically decreasing.

•  Use triangle inequality. This step is used to bound £ ( f N+K — f N)2.

• B o u n d  £ { f N — f M)2. Properties of the procedure are used to provide a bound 

for any N  and M.  This step uses Lemma 1 .

•  Bound individual term s. Here we use the bound from the previous step 

to bound individual terms which arise in the second step from the use of the 

triangle inequality. This step uses Lemma 2.

•  Cauchy convergence im plies result. We show that f N is a Cauchy sequence 

implies result.

Before proceeding to the rest of the proof, we will first prove Lemma 1 and Lemma
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L em m a  1 Let f k be the residual o f  the regression function / ( x }v)  at iteration k and 

let f °  — f .  Define m k =  P j f k~l where Pj is a projection induced by the model 

component chosen at iteration j  and the model components chosen before iteration j .  

We denote m? by m 3.

It follows then that for  any k >  j  >  I:

<  - L |£ ( ( m ‘ )a) |i |£ ( (m i) , ) | i  (IV.48)
v a

Proof:

This proof is a slight variation on a proof of a similar lemma by Jones [112] as well 

as a related lemma of Mallat and Zhang [131). We have by Eq. (IV .39) that:

|£ (m V ‘ - ‘)l =  \£{m jm ))\  <  (£ ((m -)! ) ) '  ( ^ K ) 2) ^

<  (£((m >)2 ) ) ' - ^ ( f ( ( m ‘ )2) ) ‘ (IV.49)

where m k is the addition to the regression equation if at iteration k we use the model 

components used for calculating regressions at iteration j .

The first step follows from computing the expectation of f k~x conditional on the 

use of the same regressors as are included in m 3 and the Cauchy-Schwartz inequality. 

To see this, we note that we can write:

=  S{ mi Pj f k’ 1) =  £ {m 3m k) (IV.50)

where the last step in Eq. (IV.50) follows from the definition of m k.is Using Eq.

(IV.50), we complete the first line of Eq. (IV.49) by using the Cauchy-Schwartz

inequality to bound \£(m 3m k)\.

15 We note that for the case o f the simplified algorithm  introduced in Appendix F, Pj  is a  projection  
onto the space spanned by the m odel com ponent selected at iteration j. This point is discussed in 
more detail below.
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The last step in Eq. (IV.49) follows since:

£((rn*)2) <  sup £ ((77i*)3) <  i f ( ( m ‘ )2) (IV .51)
eec ct

The first inequality in Eq. (IV .51) follows since m* (or the residual we do explain) 

cannot explain more than the best model component we could have chosen; the sec­

ond inequality follows by dividing Eq. (IV.39) by a . I

L em m a 2  Suppose rn is a nonnegative sequence of real numbers such that r® <

oo then liminfjv— rn  rn =  0 .

P roof: This proof is from [112]. For any e >  0 we select an N  such that:

X > 2 < |  (IV.52)

Since rfc —> 0 we can always find some k >  N  such that:

r* (IV .53)
n=0 Z

We set r; as the minimum term of the sequence r j  from j  — N  +  1, ...k. Then:

i  N  i  ^  i

r* X r" = r>' X r" +  r* X rn <  -r+  rn <  6 (IV .54)
n= 0  n= 0  n=W+l n=JV+l

The first term in the last inequality follows from Eq. (IV.53) and 7\  <  r/t. The 

second term in the last inequality follows from the fact that r* is the minimum term  

for rn, 7i  =  N  *f 1 ■■■i, so that:

r* X < X r« < I  (IV .55)
J V  +  l  n = N + 1  *

where the last inequality in Eq. (IV .55) follows from Eq. (IV.52). |
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We now proceed to the remainder of the convergence proof.

S tep  1 : B o u n d  £ ( ( f N)2). At any stage, we have that the average variance of 

the residual for the next stage f N is equal to the average variance of the original 

regression function f N~r minus the average variance of what we have subtracted off:

£((/")*) = £ -  ™ N ? )  = m K - ' Y )  -  £((™w)2) (iv.56)
since m N =  P ^ j N~x. Iteration yields for any N :

W " )2) = £{P) -  E  £((>"‘)2) (IV.57)
Jt=l

Thus, we note that £ ( ( f N)2) is a bounded and monotonically decreasing sequence. 

It is bounded because 0 <  m N? )  <  £ ( f 2) <  oo and it is monotonically decreasing 

by Eq. (IV.56). Since every bounded, monotone sequence has a limit ([35], Thm. 6 , 

p. 16), £ ( ( f N)2) converges as N  gets large to some value which we will call A,.

For e >  0, we can choose some W  (which depends on the choice of e) such for all 

Q > W ,  £ { ( f Q)2) < X .  +  e2 and:

\ W Q?) -  £((/S)2)l < ^ (IV-58)

for all Q , R >  W.

Although we know that £( ( f ®) 2) converges to some limit, to prove convergence 

of as Q gets large, we need to show that { /^ }  is a Cauchy sequence . 16

S te p  2 : U se  th e  tr ia n g le  in eq u a lity . Our goal is to show Cauchy convergence 

of { / ^ }  so that for some large Q >  W  and all R,

{ £ { f Q -  f Q+R)2)' (IV .59)

16 We need to ahow that is a Cauchy sequence because | | / ^ | |  converging to  A. doe3 not im ply  
that converges (where is a sequence o f functions). To give an exam ple, let for
x £  [0,1] then | | / ^ | |  =  1 for all Q  but / ^ ( z )  does not converge.
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is small. Use the triangle inequality to write Eq. (IV .59) as:

( £ ( /«  -  <  ( £ ( /«  -  f z )2) i  +  (£(/»+'■  -  / z )2 ) i ,  (IV.60)

for some Z  >  Q +  R.

S tep  3: B o u n d  £ ( { f N — We consider some M  >  0, N  >  M.  Then,

£ ( ( / " - / M)2) =  

=  £ ( ( } ”  f )  +  £ ( ( / " ) ’ ) -  2  £ ( ( / " ) 2) -

2 V  £ ( /" m i+1) (IV.61)
j=Af

We now use the Lemma 1 to bound the last term. By the first lemma, each 

individual term in the series:

£ { f Nm j+1) (IV .62)
j —M

satisfies:

|£ ( m j+1f N)\ <  ~ ^ ( ( m i+ 1 )2 ) ^ ( ( m w+1)2)^ (IV .63)
V a

Thus:

£  ( ( / "  -  f My )  <  £ ( U M)2) -  £ ( ( / " »  +  4 = £  ((m N+1)2) -  £  £  ((m ' ) 3 ) 1
V a  j= A f-l

(IV .64)

S tep  4: B o u n d  in d iv id u a l term s. We now wish to bound both terms on the

right hand side of Eq. (IV.60). To do this, we will use use Eq. (IV .64) and set

M  — Q, N  =  Z,  so that we have:
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e(UQ- f zf )  < £((/°)2)-£ ((/z)!) + -^£((™z+1)2)t E  £(("*')’)*
V a  j = Q - l

< e2 H— 7 =e2 (IV .65)

The first inequality follows from the fact that for Z  >  Q +  R,  Eq. (IV .58) holds. 

The second inequality follows because from the second lemma, we can choose some 

Z >  Q +  R  such that:

(£((m z )2)) i  £  £((m>)2)" <  e2. (IV.66)
j=o

We can use the second lemma because:

E £ ( ( ™ J)J) < £ ( / ! ) < ° °  (IV -67)
3

and £ ((m J)2) is non-negative.

Similarly:

£  ((/<?+* _  f f ' j  <  e2 +  J L e2 . (IV .6 8 )

Therefore:

( £ ( f Q -  f Q +R)2) i  <  V 2 e ^ l +  ~  (IV.69)

which proves that is Cauchy.

S tep  5: C auchy co n v erg en ce  im p lies  resu lt.

We note that by Step 4:

£  ( ( / Q -  f Q+R)2) -»  0 (IV.70)

which implies by completeness that converges to an equivalence class of functions 

or sequences f* ([193], pp. 98-99, 74-76).
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Using Eq. (IV.57), we note that £ ((mJ)2) ^  ^C/2) which implies that:

£ { { mq )2) -»  0. (IV .71)

We define: m * =  lim ^—TO / V / w -1. By the regularity condition on model compo­

nent choice, Eq. (IV.39):

0 =  £((m *)2) >  a  sup £ ({m ;)2). (IV.72)
flee*

Therefore, /*  =  ( /  — P c ) f  where Pc is the projection on the span of all model 

components in the analysis. If the set of model components is complete, £ { ( f * ) 2) =  0. 

Thus:

lira £ {{!" )* )  0 (IV .73)jv—+oa

which substituting Eq. (IV .47) for f N in Eq. (IV .73) leads to the result (Eq. (IV.43)). 

■

Justifying the Assumptions

Since application of the convergence theorem relies on an absence of sampling 

error in any of the computed sample averages, we need to use (weak) laws of large 

numbers for dependent heterogeneous sequences to prove convergence in probability 

of sample averages. We shall focus here on issues relating to fraction models since 

replication models involve averaging over independent (or perhaps weakly correlated) 

realizations. Since we may have an infinite number or even an uncountable number 

of model components, we need to prove that the maxima of estim ated coefficients for 

spurious model components converge in probability to zero. One practical result of 

our analysis is the existence of natural theoretical weights in model selection. We can
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also say something fairly general about weak convergence of parameter estimates. In 

fact, in the stationary case we prove that, under fairly general conditions, we never 

will select a time-dependent window function. We begin with a remark describing 

a method we will use to prove convergence in probability of averages of the time- 

dependent variables.

R em a rk  1 L 1 M ix in g a le  T h e o ry  For proving convergence of sums of variables 

where the individual terms in the series depend on time in some way, we need some 

special technical methods. One approach we will take is to use theorems on T 1 mixin- 

gales (integrable random variables at each t; see Appendix A ) due to McLeish [135] 

and Andrews [6].17

For some examples of the use of these theorems, see Hamilton's time series book 

([90], pp. 190-2). This remark introduces the idea of a L1 mixingale and the relevant 

results we will need to use.

Suppose we consider a sequence of zero mean random variables X (f)  which satisfy:

E \ E [ X ( t ) \ I ( t - k ) ] \ < c tVk (IV .74)

where I ( t  — k) is the information available at time t — k18 and ci and qk are bounding 

sequences. Then Andrews’ theorem ([6], p. f 59-460) says that if rjh ~ * 0 as k —» oo, 

Q > 0  for  all t  and:

T ^ ? ^ C t< 0 °  (IV .75)

then we call such an X(<) an L 1 mixingale. It then follows that:

17 In Andrews [6], there is also a  result on L3 m ixingales which can be used.

18 I ( t  — t )  is a set o f tr-fields or a stochastic basis. We m ight use as this basis e(t — j )  for j  >  0 or 
we m ight use lagged values o f X .
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(IV .76)
1  t - 1

as T  —> oc.

We shall also use the followinf result for  doubly-indexed arrays ([6], p .461). Sup­

pose Xq'it) is zero mean and the information set depends on T and:

E\ E[ XT(t)\IT(t -  fc)]| <  ct>TVk (IV .77)

as above. If:

<  0 0  (IV .78)

and rjk —> 0 , it follows that:

I  £ * , . ( ( )  A  0. (IV .79)
1 t

We first will prove a remark about the convergence in probability of estim ates for 

individual model components.

T h e o re m  2  Suppose:

(1) the true model (c . f E q .  (IV .1) is described by a stationary autoregressive pro­

cess with an absolutely summable moving average representation and an uncorrelated 

error term with two bounded momentsj

(2) Each model component hPix has a window function gPix ( the T  subscript is 

used to indicate the dependence of the window function on time) which satisfies:

T~*

then:

( I V ' 8 0 )
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(1) All model components hPiT which include a lag r variable and a window func­

tion gp,T(t) produce estimates at the first iteration which converge in probability to:

9p,t  ( £ )  (IV .81)
(—1 /

where p {r ) is the r th  autocorrelation coefficient.

(2) For any particular iteration,

-=><>• (IV .82)
1  ( =  1

(3) At any iteration I  define:

a
T

- i
jH 'y (IV .83)

where H  =  ( h 1 h2 • - ■ h1 ) and a  is a vector of regression coefficients determined 

from a regression of the data y  on model components hk, k <  I , then

d A  [SiH'H))"1 £ { H ’y)  (IV .84)

where £(h)  is defined by Eq. (IV.33).

R em ark  2  Result (2) verifies that asymptotically, our sample averages produce the 

same result as assumed by Assumption (6) of the theorem.

P roof: For any model component hp, we compute the probability lim it of the de­

nominator in the least squares estimate. We claim that for any individual hp:

=  X > P ,T (i)J (IV.85)
1  ( = 1

where a 2 is the variance of y.

We now show this result. Since y(f) is stationary, it admits a moving average 

representation of the form:
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SJ(0 =  X ) t ( I V . 8 6 )
j=0

Conditional on information at time t — k, the process, z( t )  =  y ( t ) 2 — a 2, satisfies 

(see [90], pp. 192-3):

E \E [ z ( t ) \ l , .k}\ <  • £  | t , | | t , | M  (IV.87)
i,j=k

where:

M  =  2a\ (IV .8 8 )

Since we assume that the window function gPiT is bounded, we set the coeffi­

cients in Eq. (IV .77) as:

* * = ( . £  i7-'1)  M  tiv ‘89^

Ct,T -  SUp 
wG[l,T]

9p,t ( | ) | ! . ( iv .9 0 )

Since the average of ct is finite and t/a —* 0 as k —+ oo, Eq. (IV .85) follows. We

note that absolute summability of the moving average representation is used in Eq,

(IV.89) and finite second moments are used in Eq. (IV .8 8 ).

We now show:

hp( t ) y ( t )  -£» 7 (T-)Tlim ^  gP,T (IV.91)

where 7 (r) is the autocovariance function at lag r. For any lag r, we can use the L 1 

mixingale theory to provide the following bounds for the sequence:

9 p ,t  [E(y( t )y( t  -  r)) -  y{ t ) y{ t  -  r ) ] . (IV.92)
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OQ QQ
i* = E  E  Wlvl^ (iv.93)

i = k j = k - T

c t , T -  sup (IV .94)
«.€[!,TP W / |

where:

M  =  2 a 2c (IV .95)

(see (90], pp. 192-3). Eq. (IV .85) and Eq. (IV .91) imply that the least squares 

estimator on any model component at the first iteration behaves as:

0T ** p (t ) S ( Sp) ( IV  .96)

where S(gp) -  limT_ „ £  9p.t (?)-

Since this result applies only for the first iteration, it is useful to prove a result 

which holds for all iterations and which is necessary for point estim ates at any later

iterations to be consistent, namely that:

1  1=1

for all window functions hp.

Using the moving average representation for y

9 o =  E l r i l M  (IV .9 8)
j = 0

(IV .97)

(IV.99)
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C t T  —  S U D  

i u £ [ l , T ]

S p . t ( | ) |  (IV.100)

where M  =  2 c f . Thus, Eq. (IV.97) follows by an application of L1 mixingale theory.

To show result (3), we use the result in Eq.(IV.91) that for any model component 

containing any lag:

X* T
A‘(‘)yW 4 e b(a‘(‘M0)- (iv.ioi)

1 t = l  J

We have already shown that the diagonal terms in the inverse matrix 

converge (Eq. (IV.85)). Convergence of the non-diagonal terms is equivalent to  

convergence of the numerator terms except that there is now a product of two windows 

and gn in the m n  term but each window is by assumption bounded so convergence 

occurs with the mixingale coefficient cttr  set as the product of the maxima of each of 

the windows. Here:

V t =  E  E  NkilJw (iv.102)
t=fc-rm j = k - r n

c t ,T  -  su p  
tu6[l,T]

SUp (IV.103)
u>€[l,T]

where rm is the lag associated with model component hx and rn is the lag associated 

with model component hJ. I

The previous result established: (1) that when the process is stationary, the least 

squares coefficient on any given model component converges in probability to an esti­

mate which depends only on the lag and the mean of the window weights, (2 ) on any 

iteration, estim ates of least squares coefficients on any particular model component 

are consistent because of the last result (result (2 ) of the theorem) and the fact that 

model components are fixed as iterations of the procedure progress.
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Although we have shown that any particular model component converges in prob­

ability, to assess the consistency of the procedure we need to show that the maximum  

over all model components converges to zero. This is considerably harder and we 

shall want to do this for the case in which there are an infinite number of model 

components. The result requires two theorems. Our strategy is to first deal with the 

numerator terms in the least squares estimators and then the denominator. If we 

can prove both terms are consistent in the sense that, even with an infinite number 

of model components, all is as it should be, then we are done because by Slutsky’s 

Theorem all terms must converge in probability.

T h eo rem  3 Suppose:

(1) the true model is described by a stationary A R  process with a moving average 

representation X!j>o ~  j )  which satisfies Y,j>o jrfj  <  °°  and £ j> o  IVb'l <  0 0  and 

is driven by an independent noise process with four bounded moments,

(2) Each model component h$ has a window function ggtx ( the T subscript is used 

to indicate the dependence of the window function on time) which satisfies:

(IV .104)

and is bounded for  all T.

(3) There are uncountably many model components. Any measurable square inte- 

grable window function s p(s) where s =  ^ on the interval [0 , 1] is in the set of 

model components for any lag.

then:

sup
e P ‘

1 t=i
0. (IV. 105)

P roof:

We note that by definition:
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^  y ( t - r ) e { t )  (IV.106)

for some r  >  0. We know that ((95], Thm. 3.1):

^  £  m,T ( £ )  y { t  -  T WO => T jf ‘ g,( ,s)dW(s) +  U'  (IV. 107)

where t  is a constant and U* is a term which will be investigated below.

Since 3 5 (5 ) is by Assumption (3), square integrable and measurable on [0,1], we 

can expand it in an orthonormal basis of the square integrable functions on [0 , 1 ]. 

Thus:

=  a k (IV.108)
fc=i

where <f>k(s)  are orthonormal basis functions so that by Assumption (2) and (3):

OO
£  “ J =  1 (IV. 109)
Jt=l

Thus:

f 1 ge( s ) d W( s ) =  ^ (s )d W (s ) . (IV.110)
Jo Jo “

We can verify that in a mean square sense:

f 1 ' E a k f a { a) dW{ a)  =  £  afc ^(s)dW(s) (IV.lll)
Jo k k J 0

This follows because for any T,

fjt

P  <f>k( s ) d W( s )  +  f 1 e { s ) dW( s )  (IV .112)
fc=i Jo Jo

where e(s) is the approximation error from using only T  coefficients. Since the in­

tegrated square error goes to zero (uniform convergence is not required) as T  gets

large:
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Since each of the <f>k{s ) 3-re orthonormal, each of the stochastic integrals is an 

independent Gaussian variable of mean zero and variance 1:

E [ £  fcOOdW'OO] =  o

E [ j \ k{S) d W { s ) f  =  E \ £  £  <j>k{s)4>k{ t )d W { s )d W { t ) \

=  f 1 \4>k(a)\2 ds =  l .  (IV .115)
Jo

For any sum with T  of the a ki we can maximize the value of the expression 

(IV. 110) subject to Eq. (IV. 109) by choosing a k to be equal to 1 for the maximum  

over the T  independent Gaussian random variables.

However, it can be shown that for a large number T  of independent Gaussian 

random variables, the probability that the maximum \Mt \ of the random variables is 

greater than \/2  log T  goes to zero almost surely as T  gets large. Formally, for any

A >  1:

P {\M T\ >  y l 2 \ V > t T ) < i T x- x (IV .116)

where 7  is a constant. This is a known result which is reviewed in Appendix I. In 

Eq. (IV. 107) there is a normalizing factor of ^  so that the order of the lim it is 

the maximum divided by y / T  (because the normalizing factor in Eq. (IV .106) is r̂). 

Since —» 0 and the number of lags is assumed finite, the probability of having

any model component from an infinite set being correlated with the error term for 

the regression goes to zero as T  —* 0 0 .

We now deal with the problem of jumps or U*.  We know that U* can be defined 

as follows ([94], pp. 491-2):

(IV .114)
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[ j r  £  (9fl’T (£) “ 9S'T (V O )  z(<) + (IV .117)

where:

^ (0  :=  E  ^ ( 2/(f -  f  +  A:)e(i +  h)\ l t ) (IV .118)
k = \

which is zero for all stationary y.  Thus U * is zero and the effect of jumps can be 

ignored. fl

T h eo rem  4 Suppose:

(1) the true model is described by a stationary A R  process with a moving average 

representation J2j>o V ’j e ( ^ “ j )  which satisfies  X ) j > o  i V b ' l  <  0 0  ani  ̂ 5 Z j > o J I V b l  <  0 0  and 

where  e(f) is an independent and Gaussian noise term.

(2) Each model component hg has a window function ggtx (the T  subscript is used 

to indicate the dependence of the window function on time)  which satisfies:

=  1 (IV.119)

for  all T  and the window function is bounded for  all T .

(3) Each model component hg has a window function ggtt  (the T  subscript is used 

to indicate the dependence of the window function on time)  which satisfies:

^  f  E  96?  ( | ; )  | <  oo (IV. 1 2 0 )

and is bounded for all T .

(4) There are uncountably many model components. Any square summable window 

function s w  ft(s) where s =  5; which is a measurable square integrable function on 

the interval [0 , 1 ] is in the set of model components for  any lag.
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infe E  hw  (;)2
1  t = l

C >  0 (IV .121)

Furthermore, this constant C  depends on the maximum fourth moment of the 

window functions in the analysis.

Proof:

We note that by definition:

^ E  h o,T  (0 = ^ E  9 8 ,T  (“ ) | y(t ~  r f

We know that ([95], Thm. 3.1, p. 492):

(IV .122)

^ E  95>T ( ^ ) |  W  ~  r f  ~  ^  r  j Q ffe('s) ^ ( s ) +  V * (IV .123)

for some r  <  oo. Now we can use a similar argument as for the previous theorem ex­

cept that since / gg(s)ds is only assumed bounded and not fixed, we let the maximum  

of all the / q pg(s)ds be A. It then follows that if we want the sum in Eq. (IV .122) to  

be positive for all possible model components, we have to make sure that Eq. (IV.123) 

is not negative enough to make this aero. We can minimize Eq. (IV. 122) by choosing 

|a*| =  %/A where the sign of a* depends on the sign of the largest absolute value of 

the Gaussian random variables such as are defined by the stochastic integrals:

f 1 <t>k( s ) d W { s ) ~  N (  0 ,1 ) (IV .124)
JO

which were used in the previous result.

We now deal with the problem of jumps or U* where U* can be defined as in Eq. 

(IV. 117) except that:
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z(0 := 5Z-E (yCi “ i’ +  *)2~ <TJ(t-r+fc)l/ f) ( i v . 125)
fc=l

This is not zero. From the moving average representation for y (i), we can calculate 

that z(f) is (where r >  1 ):

oo oo

2( 0  =  X ) X ) X ) -  rn -  r)e(t  -  n -  r)  -  a l6min) (IV .126)
m = ( i - r ) A O n = ( i - r ) A O

which has bounded variance. 19 We define:

U =
J T  S ( m ’T (?) " 9S’T (V) ) *(i) + - J - f 3 , 'T (1) 4 T \

(IV .130)

We wish to show that We use L1 mixingale theory. We recall that, as

T  —> oo, the difference ggtT — g e .r i^ - )  will become negligible except at points 

where the window function has jumps. We suppose that the maximum jump in

19 To calculate this expression we note that:

OO OO DO OO CO OO

E E E E E E
\ k  = r x= r tn  n  p q /

< 3 [ ^ ( m  +  r ) ^ ]  a* (IV .127)
\ m > 0  /

which is finite by A ssum ption (1). In Eq. (IV .127) we note that:

(A — r) A 0 <  m, n  <  oo [ z  — r) A 0 <  p, q <  oo (IV .128)

We also note that the sim pler sum:

( OO DO

X )  X  X )  ™ -  r  +  k)e( t  -  n -  r  +  k)

t = r m = ( t - r ) A 0 n = ( t - r ) A 0  j

=  2 < r ? X >  +  r ) ^  (IV .129)
n > 0

is also finite by Assum ption (1). Using these expressions, we can bound the variance o f z( t ) .
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ge -p is Ct  <  oo. Thus, we can choose the L 1 mixingale coefficients c^t to be 

this maximum. To prove convergence in probability, we need to calculate the mixing 

coefficients, Tjmt for z ( t ). We note that we can choose:

>?m =  C C 9 |^ +m -,j)2M  (IV .131)
9

where M  — 2a*. We need to show that T)m —> 0. It is enough to show that 

Sr==m I 0- However, this follows from the assumption (1) of absolute summa- 

bility of Tipr .

Since the result in Appendix I applies to functions of normally distributed ran­

dom variables (c.f. [118], p. 2 1 ), it follows that as long as the window function has 

a finite number of jumps as T  —> oo, that estimates on spurious model components 

will converge in probability to zero. I

We note that the previous result implies that when computing simple regressions 

to determine model components, there is a dimensional factor of This suggests 

we should weight model components by some function of the fourth moments of their 

window functions. For instance, for a flat window, the fourth moment is proportional 

to 2; where L  is the length of the window. To eliminate the dimensional factor 

we should then weight by say \ /L  in deciding which model to select. We have found 

exactly this criteria experimentally though there is a bias tradeoff as well so that 

weighting functions such as La where a  < 0.5 seem reasonable.

We now have shown that as IT —> oo, we never have a single spurious estimate 

at any iteration when the data generating process is stationary. In fact, this holds 

in a much more general sense because the variance at any point in tim e is finite and 

we can bound the error by the maximum in the case where the variance is at its
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m axim um  and constant over tim e . 20 We now are ready to show that we never will 

select a nonstationary window asym ptotically when the true data generating process 

is stationary.

T h e o r e m  5 Suppose: (1) The true data generating process is stationary.

(2) We include fiat  model components corresponding to the whole window.

(3) We do not weight short windows more than longer windows.

Then:

We never select any windows which are not f lat  windows of  the length of  the whole 

time series.

Proof:

Consider the first iteration. Given a window function gPix associated with lag r, 

our estim ates all converge in probability to:

T
( ^ )  (IV .132)

where p(r )  is the r th autocorrelation. Thus, the theoretical value of the additional 

sum of squares added to the regression is:

7
p {t Y  [Km 7fi I> P ,T  (IV.133)

B y the Cauchy-Schwartz inequality and the constant sum of squares of window func­

tions (window function average sum of squares is 1 ):

(IV .134)

30 We need also to consider ju m p  com ponents carefully.
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for all T.  The maximum is achieved only by flat window functions with the length of 

the tim e series. Therefore, on the first iteration we will always select a flat window 

function.

On the second iteration, since we have subtracted off a stationary model compo­

nent, and the correlation with the error term can be ignored, we again have estimates 

on which we can use Eq. (IV .134) so that we will always select the appropriate lag 

window rather than a nonstationary window function as long as the weights in model 

selection do not favor shorter windows. I

We now proceed to deal more generally with models which include a finite but 

arbitrary number of stationary regimes. A large but finite number of regimes can 

also be regarded as a good approximation to a general nonstationary process, Our 

results on consistency for stationary processes also go through when there are a finite 

number of regimes.

Suppose we consider a data generating process on a large interval [0,21]. We define 

the points in the interval as for i  =  2....L and let /i =  0 and 1 =  L. We define 

77i; for z =  as:

m. = h±!±li (IV.135)
z

We define a set of model components over this interval. These model com­

ponents hj  have windows with values gj(mi)  which are constant over the interval 

We assume that on the infinite interval there is a data generating

process:

31 Technically, we assum e that the last interval from ( it , i t+ i]  is closed and all the other intervals 
are open at the right.
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y(l) = ]£'w(m0 1*-j 6/i(0ff(*-j) + e(0 (iv.136)
J=1

We thus expand the intervals [/i, ^4.1] as a function of sample size and at the same time 

add the appropriate lag functions. We can consider an arbitrary but finite number 

of stationary regimes and apply Theorem 1 . Since expectations are constant over the 

interval U — [li^, k n  ^], we can evaluate expectations at any point in the vicinity 

t — rriij; for each regime. Our definition Eq. (IV .136) also gives us a natural triangular 

array which is useful theoretically. In general, we believe Eq. (IV. 136) provides a 

useful model to examine for approximation results for more general nonstationary 

tim e series.

We now prove some basic results about our method with such semi-stationary 

processes.

T h eo rem  6  Suppose:

(1) the true model on each interval is described by a stationary A R  process with 

moving average coefficients which are absolutely summable.

(2) Each model component hk has a window function gPiT (the T  subscript is used 

to indicate the dependence of the window function on time)  which is bounded, has a 

finite fourth moment and which satisfies:

=  l  <IV -137>

then

(1) All model components hPix which include a lag r  variable and a window func­

tion gPiT(t) produce estimates at the first iteration which converge in probability to:

E fe i ^(Q gp,r(m ,)7j(r) 

£ ? =  1 K O Sp.rC m 0 < -
(IV .138)
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where 7 ;(t’) is the rth autocovariance coefficient on the i th interval and o(i) is the 

fraction of the time series covered by the ith interval.

(2) We have fo r  any model component hPtT-'

j £ ' h : T M t ) Z O  (IV .139)
1  ( =  1

(3) Least squares estimates ctk on model components hk, k <  I  converge in prob­

ability to the average of expectations:

a kA  [e (H 'H )}-1 £ {H 'y ) (IV.140)

where £  is defined by Eq. (IV.33).

Proof: For any model component hp>T, we can compute the probability lim it of the

denominator in the least squares estimate, The result is that for any individual hPtr :

7  L

^ J 2 hl,T ( i v . 1 4 1 )
1 t=l i=l

where is the variance of y  on interval 7f.

Since y  is stationary on each interval, we will use L1 mixingale theory to prove 

convergence in probability. Since computations for a general autoregressive represen­

tation become rather involved, we continue to use a moving average representation. 

By Eq. (IV .77) we have:

>fc =  E( E |rmii| ? M  (IV .142)
1 = 1  m = k —r

where are the moving average coefficients at lag m  for interval i when we take 

the interval to oo and where M  =  2a\.  We have:

ctiT =  sup |5ptT(m ;)|2
i  =  l , . . . X r

(IV .143)
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Since the average of ct is finite and t;* —> 0 as k —► oo, Eq. (IV .141) follows. 

We now show that for any model component hp{t):

S iX lM O lK O  S  */C07i(»*)ffp1r ( m i ) ( I V . 144)
1 t=i i=i

where 7 ;(r) is the autocovariance at lag r  in the ith interval.

For any lag r, we can use the L 1 mixingale theory to provide the following bounds

for the sequence gppipii)  E  (y ( t )y ( t  — r )) — y ( t )y ( t  — r)). We have:

L  oo oo 

i — 1 z = k j —k —T

(IV .145)

ct — sup 
tue[i,rj

fcr(=)| (IV .146)

where:

M  =  2a\  (IV .147)

Eq. (IV .141) and Eq. (IV .144) imply that the least squares estimator on any

model component at the first iteration behaves as:

£?=i *'(i )9p,T(rni)'yi(r ) (IV .148)
E iU  g*tT{mi)v{i)ff*.  

where t/(i) is the fraction of the tim e series covered by the interval

Since this result applies only for the first iteration, it is useful to prove a result

which holds for all iterations and which is necessary for consistency to occur. We now

prove the final result:

0 (IV. 149)
1  1=1

for all window functions

Using the moving average representation for y



www.manaraa.com

99

V o = £ t h , \ M  (IV .150)
i = l j = 0

Vk =  o A > 1 (IV .151)

ct,T =  sup |sPlr (m 0l (IV .152)
i = l , . . . L

where M  — 2u\.  Thus, 7]k —* 0 and the result holds.

The result for numerator in (3) has already been shown as have the necessary 

results for the diagonal terms in the inverse matrix. The L 1 mixingale bounds need 

to be modified so that for element x,y:

ct,T -  sup \gXlT(rrii)\ sup |pyir(™»)l (IV .153)

and:

% =  E  £  £  (IV .154)
t = l z ~ k —r s j = k —r v

where r x and r y are the lags associated with the model components hx and hv. I

The following theorem suggests there are circumstances under which we will never 

pick flat windows unless they correspond (in terms of the fraction of tim e) to at least 

the minimum regions of stationarity.

T h eo rem  7 Suppose we include fiat  model components in the analysis which are 

constant over all possible pairs of intervals for  all i =  j  >  i , then

we never select model components which do not have support on at least the minimal

stationary partition: [/;^ ^  ] f or some i such that L >  i >  1 and j  such that

L +  l > j > 2 .



www.manaraa.com

100

P roof: We can always achieve accurate estimates as T —> oo as if one window

function has only an infinitesemal portion in some interval i  the summation terms 

will have no weight. If it does have a small portion on an interval, estimates will be 

consistent.

We choose the model according to the maximum value of |j4 |:

A =  y =1 (IV .155)
y/HiLi 9k{mi)2afu{i )

where u(i) is the fraction of the tim e series covered by regime i. We can rewrite A 

for any partition of the line P j  as:

Y , 9 k ( m  (IV. 156)
iSFj a *

where Ni captures the denominator terms in Eq. (IV .155). Thus, by the Cauchy- 

Schwartz inequality;

|A |, < E ‘' « ( — )  (IV.157)
isP , V 1

which is an average of the r 2 from a regression with flat window functions. Suppose 

the properties of 7 , and Oi are constant over the interval P j  then we will never choose 

a smaller window than the length of P j  because we can reach the supremum (over all 

possible partitions of lengths less than P j )  if and only if we choose a model compo­

nent which has flat weights. At further iterations, the minimal stationary partition P j

may change but by the choice of model components, it may never be smaller than ■

Therefore, at any iteration, the method will never pick a window smaller than the 

region of local stationarity in terms of the autocovariances at any particular lag. This 

provides an indication that the method may be effective in handling locally stationary 

or semi-stationary processes.



www.manaraa.com

We now review a basic weak convergence result for a general nonstationary process. 

We note that Theorems 3 and 4 continue to apply in terms of consistency when there 

are an infinite number of model components because the variance is bounded at 

any point in tim e. We shall exam ine the properties of parameter estim ates in the 

nonstationary A R ( l )  case to show that the convergence in probability conditions of 

Theorem 2 are m et.

T h e o r e m  8 Suppose: (1) the true model is described by a nonstationary A R{  1) pro­

cess which has (a) more than two bounded moments, (b) error term with more than 

two bounded moments, (c)  an autoregressive parameter which is always less than 1 

in absolute value. The autoregressive parameter depends on the fraction of time and 

the autocovariance at lag 1 at t ime t,  7 t ( j 0 ,  a function of  the fraction of  the time 

series.

(2) We have a se t  of model components hk which include window functions gj. 

which satisfy:

= 1. (IV.158)V  n . „ ( L X 2
T

are bounded 

then:

(1) All model components hk which include lag one data produce estimates at the 

first iteration which converge in probability to:

A _  Jo m /  1
Pk — r i 2 /  \ 2 i  ( I V . 1 5 9 )

Jo 9k{s )a (s )ds

(2) All model components hk satisfy:
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Proof:

For the numerator, we wish to show that:

j*

^ £ M 0 s r ( 0  ^  ( ? ) 5*,T ( ? )  (IV .161)

where 7 (t) is the first autocovariance of y  at tim e t. We note that:

y ( t ) y ( t  -  1) =  0 (t )y( t  -  l ) 2 +  e(t)y(t  -  1) (IV.162)

Define:

E  (e)2] * sup [i?(y(i — I ) )2] * (IV.163)

which is finite by Assumption (1).

We define:

* (0  :=  9k {y{ t )y ( t  -  1) -  E (y ( t ) y ( t  -  1))) (IV .164)

We wish to show that z [ t )  is a L1 mixingale. We use the terms within the brackets 

to define the mixing coefficients r)m. We have:

Vo =  N  +  sup |/?(2)| E  y ( t  — l ) 2 -  E (y ( t  -  1)2)| (IV .165)

Noting that:

y { t  -  i f  =  j3(t -  1 f y { t  -  2 )2 +  2/3(i -  1) e{t -  1 ) y ( t  ~  2) +  e{t -  i f  (IV.166)

it follows that:

m—1
T)m =  sup IP(t)  I J  P(t  -  j f \ E  |y(t -  m f  -  E (y { t  -  m )2)| (IV.167)

1 j =i
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which converges to zero as m  —» oo because of the assumption that supt |/?(f)| <  1. 

We set:

ct,T =  sup
iu€[i,r] 9k,T (?)l (IV .168)

which by Assumption (2) is finite. Thus, the result for the numerator holds. 

For the denominator of the least squares estimate, we wish to show that:

1 t=i
7p1£ ,< 72(t)9k,T 

By the recursion Eq. (IV. 166), it follows that:

(IV .169)

Vo =  sup E \y( t  — l ) 2 -  E (y { t  -  1)2)|

and for m  >  1

(IV .170)

t n - l

Vm =  sup JJ P(t -  j ) 2E\y ( t  -  m ) 2 -  E {y ( t  -  m )2)|
1 j=0

so that Tjm —► 0 by Assumption 1. Since we can set:

(IV .171)

ctiT =  sup 
tue[i,r]

9k,T

Eq. (IV .169) follows. 

We now prove:

1
hk,T(tM O  0

t=i

(IV .172)

(IV .173)

The model component hk contains a window function gk which is multiplied by a 

lag variable y ( t  — r*.) where rjt is the lag associated with model component hk. We 

note that:

(IV .174)
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Thus, we have L1 mixingale coefficients:

c(,T =  sup 9k,T ( | (IV .175)

T]o =  N  (IV .176)

which is finite by Assumption (1). For m >  1, rjm =  0. Since ct has finite mean and 

Vm —* 0, the result in Eq. (IV. 173) follows. ■

For the more general nonstationary case, computations can quickly become quite 

involved. Therefore, it is useful to work with a nonstationary moving average repre­

sentation:

y (‘) =  f ( I V- ^ )
j=l

where e is an i.i.d. disturbance with four bounded moments. Since we have assumed 

that the first moment of y  is bounded:

OO OO

£ | y ( i ) [  =  £ f | £ T j ( i ) e ( i - i ) |  <  b>-( f) l  < 00 (IV .178)
j - i  j=i

where M  — E |ej. Thus, we can assume without loss of generality that the moving

average representation for y  is absolutely summable at each t.

T h eo rem  9 Suppose: (1) the true model is described by a nonstationary A R  process 

which has an absolutely summable moving average representation with an error term 

with more than two bounded moments

(2) The true model is a fraction model in which the autocovariance at lag r  at 

time t, 7r,T(y)j a function of the fraction of  the time series.

(3) We have a set of model components hp which include window functions gp 

which satisfy:
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5p,T W l  l j
(IV .179)

and are bounded, 

then:

(1) All model components hp which include lag r data produce estimates at the 

first iteration which converge in probability to:

a =  So 9 p ( s h r ( s ) d s  
PP &  9}(s)cr>(s)ds

(2) All model components hp satisfy:

(IV .180)

1  t = 1
(IV .181)

(3) At any iteration I  define:

a
r l
- H ' H

.T

- l

f H ‘s i
(IV .182)

and a  is a vector of regression coefficients determined from a regression of the data 

y  on model components hk, k <  I ,  then

a A  [ f (H 'i/) ]_1 £{H'y) . (IV .183)

Proof: For any model component hp, we can compute the probability limit of the

denominator in the least squares estimate. The result is that for any individual hp:

±  i i ( , v . i 8 4 )

where <jy is the variance of y ( t  — r) (r is the lag associated with model component

h i

We now show this result. Since y(t )  admits a moving average representation of 

the form:
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y(i) =  ! > , ( * ) < * - i )  (IV. 185)
j=G

Conditional on information at tim e t  — k, the process, z ( t ) =  y { t )2 — a 2, satisfies 

(see [90], pp. 192-3):

£ |£[*(t)|/.-*]l < £  |r j(0 IW 0 l* f (IV.186)
i,j=k

where:

M  =  2 a 2t  (IV. 187)

Since we assume that the window function gPir  ( y )  is bounded, we can set the

mixingale coefficients as:

l £ w)
2

T)k =  sup I | t ,'| ] M  (IV .188)

Ct T — sup 
w6[i,r]

, t ( | )  | (IV.189)

Since the average of ct is finite and Tjk —> 0 as k —> oo, Eq. (IV. 184) follows. We 

note that absolute summability of the moving average representation is used in Eq. 

(IV .188) and finite second moments are used in Eq. (IV .187).

We now show:

7 y

- E  * -(% (* ) -  &  ( I V ‘ 1 9 0 )

where 7 P is the autocovariance function at lag t . For any lag r, we can use L1 

mixingale theory to provide the following bounds for the sequence:

9 p ,t  {E (y ( t )y ( t  -  r)) -  y ( t )y ( t  -  r)) (IV .191)
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7/jfc -  sup
t

CO CO

J 2  E  MOItoWI. M (IV .192)
i = k j = k —r

CtiT  =  SUp 
we[i,T]

9p.t J (IV .193)

where:

M  =  2cr2 (IV .194)

(see [90], pp. 192-3). Eq. (IV .85) and Eq. (IV.91) imply that the least squares 

estimator on any model component at the first iteration behaves as:

f t
So 9p(s hr{s)d3  

So 9 l { 3)a2{3)ds
(IV .195)

Since this result applies only for the first iteration, it is useful to prove a result 

which holds for all iterations and which is necessary for point estimates at any later 

iterations to be consistent. We now prove the final result:

Tf, £  V t
1

for all window functions hp.

Using the nonstationary moving average representation for y:

(IV .196)

t/o =  sup
t £  lri(0 l

j= 0
M (IV. 197)

7/fc =  0 k >  1 (IV .198)

ct'T — sup (IV .199)

where M  — 2of. Thus, Eq, (IV .196) follows by an application of L1 mixingale theory.
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We now show result (3). Convergence in probability of the numerator terms has 

already been shown (Eq. (IV .190)). Convergence in probability of the m n  element of 

the inverse matrix involves:

ctiT =  sup 
weli,T]

9 m , T (IV .200)

T)k =  sup
t

CO  CO

£  . £  M 0 l l v ( 0 l  m  (1V .2 0 1 )
_ i= k~ r ,n  j = k —r n

where rm and r„ are the lags associated with model components hm and hn respec­

tively. Thus:

T
H'H

and Result (3) follows.

(IV .202) 

I

Synopsis

In this chapter, we have provided some general convergence and consistency results 

about the method proposed in the thesis. It is useful to provide a brief summary of 

some of the main results.

After defining fraction models (c.f., Eq. (IV .7) and replication models (c.f., Eq. 

(IV .19) and Eq. (IV .21)) for nonstationary tim e series, we show how both classes of 

models can be expressed in terms of model components in the sense that:

J

y (f) =  ! £  &■(*)»(*- j )  +  ei ( 0  
j=i

K

=  Y  a khk(t) +  e2{t).
k=i

(IV.203)
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In the thesis, we have proposed an estimation procedure which constructs regres­

sion estim ates from a collection of hk, k =  1 , M ,  where M  may be much larger than 

K . From this large set of M  “potential model components”, we estimate a model of 

the form:

m  =  'E & k h k(t)  (IV .204)
k=I

where we use the notation hk (instead of hk) to indicate that the model components 

have been selected by the procedure. By comparison, if we knew the true jSj(t)

function, the expected value of y  conditional on the values of the lagged dependent

variables {y(f — y )} /=1 would be:

=  (IV-205)i=i

In this chapter, we prove the convergence of model component expansions in the 

sense that, as the number of model components in the analysis I  gets large, the right 

hand side of Eq. (IV.204) converges to the right hand side of Eq. (IV.205). This 

convergence occurs in the sense that the mean squared error of the representation 

goes to zero (Theorem 1, Eq. (IV.43)).

Convergence occurs even though in the estimation procedure, we select the model 

components from a much broader set of M  possibilities and do not know a priori  the 

precise functional form of the /9j(i). For convergence, we must be able to express each 

of the hk in Eq. (IV .203) in terms of a linear combination of a subset of potential 

model components (Theorem 1, Assumption 4). Asym ptotically (as /  gets large), the 

procedure selects the appropriate hk or their linear representations.

The convergence result (Theorem 1) is interesting because at each iteration, we 

search for a local optimum (i.e., pick the next model component to include) so it is 

unclear whether we will converge to a representation which is equivalent (in terms of
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predictions) to what would result from use of a global optimization procedure (m ini­

mizing squared error with respect to all possible combinations of model components). 

The convergence proof shows that in fact we do achieve the same asymptotic mean 

squared error as would a global optimization procedure (we note that the proof says 

nothing about the parsimony  of the representation). The result is robust in the sense 

that it applies to a broader class of procedures than that outlined in Ch. II, including 

even simple stepwise regressions such as are discussed in Appendix F.

While the convergence result provides some indications that the proposed proce­

dure is well-behaved as the number of model components included in estim ates gets 

large, it is also necessary to examine whether as sample size T  gets large, point esti­

mates of the coefficients of specific model components are consistent. In practice, we 

work with point estim ates (c.f., Eq. (IV .204)) such as:

a
[ f H 'H

- l

.T
(IV .206)

where H  =  ( h 1 h2 - ■ • h1 ) and a  — ( cti a.2 ■ • • o t/) is the vector of regres­

sion coefficients at stage I  in Eq. (IV .204) (which is determined from a multiple 

regression of the data y  on model components hk, h <  I).

Since we work with nonstationary data generating processes, it might seem diffi­

cult to verify that a* does converge in probability to the true a*. Under technical 

assumptions, we verify that (c.f., Theorems 2,6,8,9) in a finite dimensional setting:

(IV .207)

as long as the error term is uncorrelated with any of the included regressors in the 

sense that:

(IV .208)
1  t =1
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In Theorems (2,6,8,9), we examine conditions under which Eq. (IV .208) holds.

Another practical statistical issue is that there may be many different model com­

ponents in the analysis and we select model components based on maximal explana­

tory power. We show consistency of point estimates resulting from the choice of 

extremal model components from a possibly uncountable set of potential model com­

ponents (Theorems 3-4). In addition, we show (Theorem 5) that if the true model is 

a stationary one and we use model components associated with the fraction model, 

the method asymptotically selects stationary model components.

Together, these results on convergence and consistency provide another ‘proof 

of concept’ that the method is well-defined and potentially useful in applications. 

Perhaps more significantly, we have defined several different senses in which to do 

statistical analysis for parametric nonstationary time series. We can either consider 

repeated experiments or assume periodicity or allow window sizes to grow with sample 

size. This conceptual framework is a useful starting point for simulation and other 

statistical analysis of the properties of nonstationary time series estimators.

Though the results in this chapter provide a useful theoretical starting point, there 

are still a number of questions which we will need to address in the thesis:

•  We do not know how fast our expansions for parameter estimates converge as a 

function of iteration; the method may not work well if expansions decay slowly. 

We address this issue in Ch. V.

•  We need to have some idea about how reliable our estimates are. We provide 

some preliminary results on confidence intervals for model choice in Ch. V.

•  As in standard time series analysis, we need a rule to select a model from 

estimates in finite samples. We propose one solution in Ch. VI.

•  How do we use the estimates from the method to produce nonstationary spectral
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estimates? Indeed, how do we even define a nonstationary spectrum. These 

questions are dealt with in Ch. VII.

•  Asymptotically, do we ever select spurious model components at any iteration? 

In Appendix H, we provide a counterexample where we asymptotically always 

select a wrong model component. This does not contradict our theorems, how­

ever, as the coefficient on this model component goes to zero when the right 

model components are added to the model.

However, since the approach is new, the thesis only provides an introductory 

treatment of many of the important theoretical issues. Thus, in Ch. IX we define what 

we feel are some important theoretical questions which may be addressed in future 

research, whether through pure theoretical analysis or computational simulation.
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C H A P T E R  V

S O M E  A U X IL IA R Y  R E S U L T S

In this chapter, we review some theoretical issues related to our approach. These 

issues include: (1) some basic results on confidence intervals, (2) rates of convergence.

Confidence Intervals

Since the method produces estimates which are come from a linear regression 

against the selected model elements, the appropriate confidence intervals conditional 

on the data and conditional on the selected model elements are the standard confi­

dence intervals associated with least squares regressions. However, experimentally, 

these confidence intervals often do not seem appropriate in cases in which we include 

large numbers of model components in the analysis.

In this section, we show that in some cases it is possible to provide approximate 

confidence intervals for estim ates at any particular stage by using nonlinear regression 

confidence intervals. We prove an equivalence between certain forms of nonlinear 

regression and analysis with an infinite number of model components. We then show 

some operational examples of what the ‘sum of squares' functions look like. For the 

approach to be valid, the model components must be smooth functions in that they 

must satisfy the same differentiability constraints imposed by nonlinear regression 

analysis. Any use of nonlinear regression analysis to determine confidence intervals is

113
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also conditional on the variable selected (e.g., lag one versus lag two) because model 

components are not a smooth function of the lags.

T h eo rem  10 Suppose that the model components in the analysis are of the form:

hi(t) =  g(0i, t )x k(t) (V .l)

for  some 9i 6 Rn and some fixed regressor variable x k■ We define A4 to be the set

(perhaps uncountable) of alt Qi, then model selection by maximizing sample r 2 at any

iteration is equivalent to solving the problem:

inf S [ ( y " ( i ) - /? s ( M ) * f c ( 0 ) 2] (v -2)
ez M  L

where S  is a sum over all observations (indexed by t)  a n d y n is the residual.

Proof:

inf S  [(t/n(i) -  0g(8 it t )x k( t ) )2 
pcnseM L

=  [5((»n(())J) -  2P S W ,  t)yn(t)xk(t)) +  P’S(g(6, tJ M O ’)] (V-3)

Thus, our least squares estimate (3 of (3 is:

- _ . , 
p s(.g(.e,tyxk( t)a) 1 ;

Using our estimates of (3, minimizing the right hand side of Eq. (V .3) is equivalent 

to solving:

„im s  (9 (8 , t ) y n{ t )xk( t ) f
k m  s ( g(o,tyxk( ty)  ( v -5)

which is equivalent to maximizing r2 over the set of all potential model components

indexed by 6. I
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If we now let 0; take values in Rp where p  is the number of parameters in 0;, we 

can interpret decisions at each stage in terms of a nonlinear regression. This allows us 

to use theorems from nonlinear regression analysis to compute asymptotic confidence 

intervals (c.f., [79]). In general, we require smoothness of the regression function r 

which implies that the windows g are twice continously differentiable in 0. We also 

require our parameter estimates to be in the interior of the Euclidean parameter 

space. As an example, this condition might be violated in our case if we had only 

Gaussian window functions and the true model were tim e invariant. We also require 

for consistency uniform convergence of the (normalized) matrices of first and second 

derivatives as sample size grows.

It is known that asymptotic confidence intervals are given in terms of the inverse 

of the matrix:

( ,a s a s ' as as \
36 99 39 90 \

/  s 2  (V -6)asas  ( d s \  I
99 90 \ 9 0 }  '  9=6o,0=0o

where S  is the (specific) sum of squares defined by Eq. (V .2) and we estim ate a 2 by 

s2:

s 2 =  (V .7)1 ~ p

and T  is sample size and there are p — 1 parameters in the vector 0. In Eq. (V .6),

0O and (3 are the population values of 0 and /?; in applications, estimated values are

substituted for population values in computing the matrix in Eq. (V .6). Furthermore, 

the expected bias of estim ated coefficients on the model components can be computed 

and is asymptotically zero.

It is useful to provide some examples on the issues of smoothness and convexity of 

the sum of squares function in terms of nonlinear regressions. Our examples show that 

for a typical sample problem we considered in Ch. Ill, the sum of squares functions is
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smooth. However, our example also shows that use of nonlinear regression methods

alone to select model components is not always advisable, because when the model

is misspecified, the sum of squares function is not globally convex.

Consider a window function g{8,  f) and a linear time-varying autoregressive pro­

cess:

y( t )  ^ / 3 g ( e , t ) y ( t - I )  +  e(t) (V .8)

< t ) ~ W ( 0 , l ) .  (V .9)

We define the sum of squares function:

St («) =  inf £  (» (0  -  - ! ) ) :
1 t=2

(V.10)

The issue is when is S t { 8 )  a smoothly differentiable function of 8\ the smoothness 

of S t ( 8 )  depends on the smoothness of the window function g used in the analysis. 

Here, we consider some experimental evidence. As a simplest possible example, we 

let y  be white noise so that the parameters Q are not identifiable since the true /? is 

zero. We set T  =  512 and consider a Gaussian window function g defined as:

g ( tm>t0,ao) =  e 3tT° . (V .l l )

In Fig. V .l, we have fixed £r0 =  40.0 and varied to on a grid with grid spacing 5to — 

From Fig. V .l, it appears that the sum of squares is a smoothly differentiable 

function of to- However, the sum of squares function is not globally convex so that 

use of a nonlinear optimization program to estim ate to would be ill-advised.

In Fig. V.2, we show data from a model where /? =  1 and where f0 ~  250, 

(To =  40.0. Fig. V.3 shows the true values of the autoregressive parameter /?p(i; fojCTo) 

as a function of tim e. In Fig. V.4, we construct the sum of squares function in a
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300 400 5000 to o 200

Figure V .l: Sum of squares for Gaussian noise
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Figure V.2: Data from smoothly varying autoregressive model
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Figure V,3: Autoregressive parameter
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Figure V.4: Sum of squares function with Gaussian window
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1.2

105

300 400 500too 2000

Figure V.5: Sum of squares function with flat window

similar way to Fig. V .l;  this sum of squares function appears to have a well-defined 

minimum and it appears to be sm oothly differentiable.

Fig. V .5 shows that the properties of the window function g m atter quite a bit 

for the sm oothness of the sum of squares function. W hen we use a flat window 

function g to  construct the sum of squares function, the sum of squares function in a 

finite sample is not even C°. Thus, confidence intervals based on nonlinear regression 

analysis may be tricky to construct for nonsm ooth windows.

Convergence Rates

One factor which might make our m ethod perform poorly in practice is a slow rate 

of convergence in that it may take many model components to capture the behavior of 

a given tim e series. Therefore, it is useful to show that in any finite dimensional space, 

the residual decays exponentially with the iteration. We will show that this occurs for
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any regression with a finite amount of data and applies also in the case where simple 

stepwise regressions are used at each iteration (see Appendix F for discussion).

We define:

C V 12)

where S  means a sum over observations so that A2 is the maximal empirical simple 

correlation r 2 obtainable from a simple regression of y n~1 on all model components 

in the analysis. The set of model components is denoted by C.

We recall that m" is the additional sample variation explained by adding a model 

component hi at iteration n .1 We let:

^  (V -13)
S g R  \ g £ 0

T h eo rem  11 We let y° be data which lies in a finite dimensional space where T  

is the number of observations. We define the residual:

(V.14)
k = l

where m f  are the contributions to regression estimates from stage k. We define a 

set of model components C with elements hi which include window functions which 

together span the finite dimensional space Rr  then, in Eq. (V.13):

(1) ft >  0.

(2) the residual decays exponentially as the number of iterations increase.

P roof: The proof is a small modification of one in [131]. We suppose that we choose 

a model component only if for some 0 < a  <  1:

1 Formally, aa discussed in Ch. II, m” =  P i f n~ l where Pi is a  projection o f the residual f n~ l on 
the m odel com ponent chosen at iteration * and all previously selected m odel com ponents. Thus, m” 
is the predicted part o f  a  regression o f the residual / 11-1 on each o f the previously selected model 
com ponents.
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S ( (m ')2) >  a  sup S((m J)2) (V.15)
flee

where m ’ — i \ y ‘-1 =  y‘-1 — y l - and m'$ is the explained part of the regression if we 

use model component h$ at iteration i instead. We note that Eq. (V.15) is similar in 

appearance to Eq. (IV .35) in Ch. IV but different technically because we use sums 

instead of expectation values. Then if the data is y°, we have:

5 ((y 1)a) =  5 ((» 0)s ) - 5 ( ( m 1)a) (V.16)

By the definition of fi in Eq. (V.13) we have that (since y. is a minimum):

S((y°)2)f i  <  s n p S ( ( m l ) 2) (V. 17)
flee

By Eq. (V.15):

^ ( m 1)2) >  afiS ( ( y 0)2) (V .18)

Thus, in Eq. (V.16), we have:

W ) 2) <  S ((y D)2) -  « ^ ( ( y ° ) a) =  (1 -  a ^ )5 ((y 0)2) (V.19)

Similarly, it follows that:

S ( (y2T )  <  S ( ( y ' ) 2) -  a p S i i v 1)9) =  (1 -  S((y°)2) (V.20)

Therefore:

Sto")2) < (1 -  ( / ) 2) (V.21)

Thus, the residual decays exponentially in a finite dimensional space. It remains 

to show that fi >  0 if  5 ((y fc)2) >  0 for any k. Suppose S ( ( y k)2) is greater than zero
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then y k is a nonzero element of R^. We show that there must be at least one element 

hi in the set of model components such that |S'(T/fc/ii)| >  0. Let the explantory variable 

included in /i; be denoted as a a n d  let the window function of hi be denoted as gi then 

the product y kx{ lies in the space RT which is spanned (by assumption) by the set 

of window functions g,-. We note that: !5(yfcx;Si)| =  |5 (y fc/i;)| Therefore, it must be 

the case that there is some hi and associated x,-, gi such that: >  0 if y k >  0. ■

It is helpful to show that the theorem is operational by considering an example. 

Since Gaussian noise is the worst possible scenario in terms of explaining the sample 

variance of a tim e series with the minimal number of coefficients, it is helpful to 

consider the properties of a decomposition of Gaussian noise while noting that none 

of the selected model components are statistically significant as by definition white 

noise cannot be predicted by its lagged values. This worst case scenario helps us 

understand the behavior of residual in the case in which we do not properly select 

model components.

We consider a simple 4096 point decomposition with Gaussian noise:

y{ i )  =  e{t) (V.22)

where e(i) ~  W (0,1). Since we wanted to ensure that there is little possibility of spu­

rious phenomena with Gaussian noise, we chose a large number of potential model 

components (in this case we use 700,000) and iterated the algorithm for a long tim e 

(in this case 2,000 tim es). Since this would be impossible to do computationally using 

a procedure which computed a linear regression at each iteration, we used a compu­

tationally more effective procedure but still convergent procedure which satisfies the 

conditions of the theorem on exponential decay.

This procedure is the ‘simplified approach’ described in Appendix F. This proce­

dure has residual which decays at a slower rate than a procedure which uses a linear
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Figure V.6: Decay of residual for 4096 point Gaussian noise with con­
stant filters. Ordinate is logarithm of percentage of en­
ergy in residual. Plot is of coefficient number vs. log 
residual. The rate of decay seems to be exponential.

regression at each stage. The results are illustrated in Figure (V.6) where it appears 

that the residual is decaying exponentially. The exponential rate of decay on the esti­

mates suggests that the residual is not converging that slowly and that the statistical 

properties of the estimates are not likely to be all that bad. One would expect and 

in fact finds exponential decay when a much smaller set of model components is used 

than the 700,000 we used in this simulation experiment.
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C H A P T E R  V I

A S T O P P IN G  R U L E  

Given the time series representation:

m -ibw  (vi.2)
;=o

where h' are selected model components, the question arises how to choose N  op­

tim ally so as to achieve the best estimates. One possibility would be to examine 

the r 2 of the selected coefficient and test whether it is statistically signiciant. De­

termining the distribution of such a statistic when the residual at iteration n , y n, is 

white noise is possible but it is a problem which requires knowledge of all the correla­

tions between model components [118) and the likely extreme-value structure of the 

distribution may lead to other complications as well as a possible loss of efficiency. 

Numerical experiments indicated that the problem of the distribution of maxima of 

r 2 for individual model components also failed to provide any quantitative character­

izations in terms of the included model components. While further progress on this 

problem is expected, it is useful to provide a special stopping rule which also serves 

as a good test for randomness in economic tim e series when the alternative involves 

time-varying parameters.

Tests such as the cumulative periodogram test will be powerful when the alterna­

tive hypothesis is a nontrivial covariance stationary process; however, in our method,

124
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the alternative is not likely to be a covariance stationary process and instead is likely 

to involve time-varying coefficients. Therefore, we propose a new test for random­

ness which simulation experiments and theory suggest good properties in the case 

where the data is nonstationary. Our test is called a cumulative waveletgram test 

for randomness, because we use wavelet coefficients instead of Fourier coefficients to 

construct our test.

Wavelets provide a different type of orthonormal representation than that of 

Fourier analysis. Our experiments with economic data suggest that in many cases, a 

given number of wavelet coefficients capture more of the variance of economic tim e 

series than do Fourier coefficients; thus, we suggest that wavelets may be a useful tool 

of broad applicability in the analysis of economic data. Some potential applications 

include: regression estimators, tests for stationarity, nonstationary spectral estima­

tion, and nonparametric function estimation. Here, of course, we focus on a test for 

randomness, but this chapter can serve as a short primer on wavelets and their use 

in tim e series analysis.

To summarize, our results in this chapter include:

•  The cumulative waveletgram has an asymptotic Brownian bridge distribution. 

In small samples, simulation evidence indicates that the asymptotic confidence 

intervals need to be substantially corrected.

•  There appears to be little loss of power against stationary alternatives from 

using the cumulative waveletgram instead of the cumulative periodogram.

•  There appears to be a large gain in power against nonstationary alternatives 

such as time-varying variances from using the cumulative waveletgram instead 

of the cumulative periodogram.

•  The cumulative waveletgram does poorly when the data is a sine wave corruped
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with noise, but we introduce an alternative test called the adaptive waveletgram  

which can have better performance.

•  Empirical examples are provided with economic and financial tim e series data.

A Primer on Wavelets

Wavelets are basis functions of L2 (the space of square integrable functions) with 

two special features: (1) unlike the Fourier basis functions, the wavelet basis functions 

are local in time (see Fig. (VI.2) for an example and compare with a sine wave), (2) 

they have frequency dependent bandwidth in that larger ‘waves’ are used to measure 

lower frequency movements and shorter waves are used to measure high frequency 

movements.

There exists a rich and recent mathematical theory of wavelets which is reviewed 

in monographs by [54] [39] [138]; two seminal theoretical articles on wavelets are: [130] 

and [52]. There are now a number of surveys of applications and recent theoretical 

developments; these include: [185] [18] [20] [40].

To describe wavelets, we shall need to use the theory of Fourier transforms. Recall 

that the frequency domain or Fourier representation of a function is defined by its 

Fourier transform. The Fourier transform is an operator T  : L1 PI L2 i—* L“  fl L2 so 

that for /  £ L1 H L2,

f ( u )  =  T /(w ) =  r  f ( x ) e - iuxdx (V I.3)
J  — oo

We thus use the special notation f  to refer to the Fourier transform of / .  It has an 

inverse: /  /  defined by:

(VI.4)
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A wavelet x >—> ip(x)  is a function such that:

\lt) | a

which requires that (since "0(0) must be zero):

r 1 €  L (VI.5)

J  dx ip{x) — 0. (VI.6)

There exist wavelet functions if>(x) whose 'dilations’ indexed by j  and translations 

indexed by k :

{V *  =  2 - ^ ( 2 - ^  -  (V I.7)

form an orthonormal basis of L2. We will focus on such wavelets here. Dilation 

makes the function spread out and hence form a longer wavelet which measures lower 

frequencies; translation shifts the wavelet function to measure the properties of the 

tim e series at some other point in tim e. In Ch. VII, we will review the idea of t ime- 

frequency spectral estimation and explain how wavelets fit in a general framework; the 

analytical framework of Ch. VII will thus provide insight into why wavelets ‘work’ 

in certain situations but do not in others. This complex analytical framework is 

not necessary to understand the mechanics of the wavelet transform or some of its 

intuition.

To see the intuition of how a wavelet transform works, we consider some function 

<f>(x) whose translates <f>jk =  2“ a^(2"Ja: — k ) are orthonormal for k £  Z and any fixed 

j  €  Z. Effectively, <f> acts as a low pass filter.

Since <f>(x) is a coarse-grained functional representation relative to 0(2a;), we can 

express <£(:c) in terms of translations of the finer functions $(2x)'.

<f>(x) -  \Z2^2 a n<f>(2x -  n)
n

(VI.8)
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for some sequence { a n}^ ._ 00 £ l2 (the space of square summable sequences).

It is known[129] that a wavelet function ip(x) can also be expanded in terms of 

translations of for such a

Tp(x) =  s / l Y , M { 2 x  -  n)  (VI.9)
n

for some sequence {/?n}JJL_oo £ l2. If we take inner products of a function /  with Eq. 

(V I.8) and Eq. (VI.9)j we arrive at the algorithm of Mallat [130] for fast computation 

of orthonormal wavelet transforms.

When we are done, we have a wavelet series representation:

o o  J  o o

z/(f)=  Y  cJ,khAt)+ Y  Y  d3,ki>j,k{t) (vi.io)
k — — oo j=r—oo k =  — oa

where:

(2~Jt — &) (V I.11)

=  (V I.12)

and tp(t) and are the wavelet and ‘smoothing’ functions described above and in 

more detail in sources such as [54].

One example of a pair of <f) and corresponding to a Battle-Lemarie wavelet, is 

shown in Figures (V I.l) and (VI.2). The function tfi in Figure (VI. 1) is a linear spline. 

The corresponding <j) is shown in Figure (VI.2). The explicit formulas for this wavelet 

in terms of Fourier transforms are ([54], p. 147-8):

o) =  n/3(2tr)~£ -- 4-Sm ^  . (V I.13)
ara( l  +  2cos2( f ) )?   ̂ }

;. -(j is. . a/tij\/l-|- 2sin2(7)'\ a
V M  =  # ( - ) *  » sm ( ? )  (VI.14)
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Figure V I.l: The function cf>(x) is a linear spline function which is used 
to generate the Battle-Lemarie wavelet shown in Figure 
3.

Another example of a pair of 4> and corresponds to the choice of a Haar wavelet

(87]:

$(x)  =
{

1 if x £ [0 , 1 ]
(VI.15)

0  otherwise 

- 0 .5  if s  £  [0,0.5] 

# e ) = ^ 0 . 5  if x £  (0.5,1] (V I.16)

0  otherwise
As an example, we consider a wavelet decomposition of the simple nonsmooth 

function shown in Figure (V I.3). The Haar wavelet coefficients are shown in Fig. 

(VI.4); the Fourier coefficients for the same function are shown in Figure (VI.5). From 

the figures, it appears that the Haar wavelet representation is more parsimonious than
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Figure VI.2: The function tp(x) is a Battle-Lemarie wavelet generated 
from the linear spline function in Figure 2.
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Figure VI.3: Edge function.

■ n  Tm w  no

Figure VI.4: Haar wavelet coefficients for edge function.

the Fourier representation because fewer coefficients are required to represent the edge 

function at a given level of accuracy. The better properties of the Haar representation 

are due to: ( 1 ) locality since the edge function has certain local features not easily 

expressed in terms of global functions like sine waves, (2 ) lack of smoothness since the 

edge function is not differentiable. These special properties of the edge function are 

of interest in nonstationary tim e series which almost by definition have sharp local 

features.

Appendix C  provides an explicit recipe for calculating wavelet coefficients from a 

series of data; alternatively, Numerical Recipes [166] now contains code to calculate 

wavelet transforms of discrete sequences.
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Figure VI.5: Absolute value of Fourier coefficients for edge function.

Computing the Cumulative Waveletgram

To compute the cumulative waveletgram we first compute wavelet coefficients 

using the fast algorithm developed by Stephane Mallat [130] (again, see Appendix C 

for a recipe). We define the sample wavelet coefficients of y, dj^,  for a tim e series of 

length T  as:

=  (V I 1 7 )
t = l

In appendix C,  we show that the sample wavelet coefficients of Gaussian white 

noise are mean zero and independent random variables.

We define then the cumulative waveletgram (or CWG) as:

C W G ( t ) =  £  K *  I2 ( V I . 1 8 )
one p a th

where t is an index of the coefficient along a summation path and T  is the length of 

the random series. The summation notation of "one path” is used because sums are 

taken according to a single summation path along which each coefficient enters once 

and only once. For simplicity two orders of summation may be used. The first sums 

over tim e first at each scale and the second sums over scales at each fixed tim e. The 

first rule is shown in Figure V I.6 . The second summation rule is shown in Figure
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Scale

Tim e

Figure V I.6 : First summing rule

Scale

X -X J X h*  X  X  X  X  X  X
Time

Figure V I.7: Second summing rule
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V I.7. The first rule is somewhat closer to Fourier analysis than the second; the first 

path provides less power against sharp discontinuities than the second path. The 

second path sums more closely over frequency for each fixed tim e.

Since the wavelet coefficients are independent, we have:

E { C W G { t ) )  =  uH (V I.19)

We can also compute:

Var(CW G (f)) =  ct4 (3 t +  t { t  -  1) -  t 2) =  2 t aA (VI.20)

To test for randomness we use a test similar to the cumulative periodogram test. 

We define the cumulative wavelet distribution as:

CWDU = C W G ( T - 1) <V I'21)

The cumulative periodogram test is based on the Kolmogorov-Smirnov test but it 

only has asymptotically the same statistics since the periodgram ordinates only have 

an asymptotic exponential distribution. For the Kolmogorov-Smirnov test a good 

approximation for the cumulative periodogram test is to reject the null hypothesis 

of randomness at level a. if the cumulative periodogram, G P G ft), exits from 57^  ±  

2 where k0,0s =  1.36 and fc0.oi =  1.63 [190]. These statistics are incorrect for 

periodogram ordinates in small samples (computationally, N  <  16,000). We compute 

the sampling statistics numerically for different orthonormal wavelets. The ka (which 

depend weakly on sample size in small samples) are shown in Table VI. 1 for 5% 

intervals. Values of ka are reported for cases in which one summation is made (by 

either rule) and in cases in which both summations are made. As can be verified 

computationally these sampling statistics do not depend on the orthonormal wavelet 

used; this follows immediately from the equivalence of distributions of the distribution
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Sample Size 1 sum 2 sum

64 1.758 1.925

128 1.815 1.981

256 1.845 2.015

512 1.872 2.034

1024 1.884 2.052

2048 1.895 2.064

Table VI. 1: 5% simultaneous confidence intervals for the cumulative 
wavelet distribution test of randomness. Computations 
are based on 200,000 replications. 1.923 is the asymptotic 
value for the 1 summation path statistic. The asymptotic 
value of the 2 summation statistic is an open question.

of the coefficients of white noise decomposed in a real orthonormal basis.

Asymptotic Distribution

The cumulative waveletgram converges in distribution to a Brownian bridge pro­

cess. Let W ( t ) } t €  [0,1] be Brownian motion. A Brownian bridge B( i )  for t 6 [0,1] 

is defined by:

B( t )  =  W { t ) - t W {  1) (VI.22)

We let p(s) be a sequence of random variables and define:

i 1^1
Cr( t )  =  =  -  O  (VI-23)

1  i = l

where [TY] is the largest integer less than or equal to Tt .  Suppose p(s) — a 2 is an 

independent random variable with four bounded moments and variance r 2, then:

\ / f C T{t )=> N ( 0 , r 2t) (VI.24)
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so that CV(i) converges in distribution by the functional central lim it theorem [25] to 

a Brownian m otion on [0,1]:

\ Z f C T( t ) = > r W ( t )  (V I.25)

We now let p (s) be a path of wavelet coefficients. Then the cum ulative wavelet­

gram is:

C W G { t T )  =  (T  CT{t)  +  a 2 1 T )  ( VI.26)

and the cumulative wavelet distribution is:

n Wn m  -  CWG(tT) -  /V^QtCQ + v ^ A  I L  IV1 m
t (  ) “  CWG(T)  ~  (  v'T C rU ) +  V T  v* )  [Tt\ ( '

Subtracting t from both sides, we have:

CWDT(t )  -  t = ( V T C T W - t V f C r ( l ) \  Tt
I, y / T C T {l )  +  \ / T  a 2 )  [Ti\ K }

M ultiplying both sides by s / T  we have:

V T C T{ t ) ~ t s / f C T{ \ ) '
y / f ( C W D T( t ) - t )  =

T t
[Tt]

(VI.29)
CT( l) + <73

The denominator of the term in brackets on the right hand side of Eq. (VI.29) 

converges to a constant:

CT(1) +  £T2 =  - j =  V T C t { 1) +  tr2 -> o-2 (V I.30)

since V T C t ( I )  => t W ( 1 )  by Eq. (V I.25). The numerator of the term in brackets on 

the right hand side of Eq. (VI.29) converges to  a Brownian bridge process proportional 

to W ( i ) - t W ( l ) :

\ Z f C T( t ) - t V f C T{ l )  =► r W ( t ) - t r W ( l )  (VI.31)
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by the functional central limit theorem (c.f., Eq. VI.25). Finally, converges to 1. 

Thus, the cumulative wavelet distribution converges at rate T? to a Brownian bridge 

process B(t):

\ \ / f ( C W D T{t) - t ) = >  B( i )  (VI.32)

where A =  —. For Gaussian noise, we have A =
T  1

Examples

An example of the cumulative wavelet distribution for a Gaussian white noise 

sample of size 512 is shown in Figure VI.8. 5% confidence intervals are shown and 

the cumulative wavelet distribution remains within the confidence bounds as indeed 

it should.

A particularly simple example of the usefulness of the cumulative wavelet distri­

bution test is to consider the sequence such as might arise from a crude structural 

break or discontinuity in a time series:

f 1 n =  256
/ ( n )  =  (VI.33)

[ 0 0 <  n <  256 or 256 < n  <  512

In this case one can calculate that the discrete Fourier transform is: /(aijt) cx 

( —l ) fc k 6  2 so that the ‘periodogram* of /  is always uniform. While the cumulative 

periodogram test will fail, the cumulative waveletgram test has no difficulty detecting 

the singularity. Application of the cumulative waveletgram test is shown in Figure 

(VI.9).

Since the wavelet basis achieves good localization in both tim e and frequency, it 

also is capable of performing tests on stationary time series (at some loss of efficiency). 

For instance, we consider a realization of an an AR1 tim e series with 512 observations:

1 The factor A is the same for all analogous cum ulative sum testa in real orthonorm al bases.
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Figure V I.8: The cumulative wavelet distribution and 5% confidence 
interval bounds for random noise (sample size 512) de­
composed in the Daubechies 12 wavelet basis. Summa­
tion and statistics are based on first summation path.
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Figure V I.9: The cumulative wavelet distribution and 5% confidence 
interval bounds for a discrete dirac function decomposed 
in the Daubechies 12 wavelet basis. Summation and 
statistics are based on first summation path.
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Figure VI. 10: The cumulative wavelet distribution and 5% confidence 
interval bounds for a AR1 tim e series with AR parameter 
0.6 in the Daubechies 12 wavelet basis. The null hypoth­
esis of white noise is clearly rejected. Summation and 
statistics are based on first summation path.

y( t )  =  0.6y(i -  1) +  e(i) (V I.34)

We compute the cumulative waveletgram of a realization of this process and the 

results are shown in Figure VI. 10. The cumulative waveletgram appears to do an 

excellent job of rejecting the null hypothesis of white noise.

To show the practical  usefulness of the test, we consider Standard and Poor’s log 

stock returns (from the CRSP daily returns file) which some consider to be random. 

The cumulative wavelet distribution clearly leads one to reject randomness as shown in 

Figure V I.11. A cumulative periodogram test also results in a rejection of randomness 

here.

It is helpful to examine the loss in efficiency from use of the cumulative wavelet­

gram on stationary time series. We generated 200,000 replications of a sample tim e 

series of length 512 from the autoregressive model:
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Figure V I .ll:  Cumulative wavelet distribution of Standard and Poor’s 
returns for 4096 consecutive trading days beginning in 
1962. The null hypothesis of a geometric random walk is 
clearly rejected; the cumulative wavelet distribution of a 
white noise sample is also shown and it is inside the 5% 
confidence bounds. Summation and statistics are based 
on first summation path.
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Figure VI. 12: Cumulative wavelet distribution of log differences in 
dollar-DM exchange rates for 4096 consecutive trading 
days beginning in 1972. The null hypothesis of a ge­
ometric random walk is clearly rejected; the cumulative 
wavelet distribution of a white noise sample is also shown 
and it is inside the 5% confidence bounds. Summation 
and statistics are based on first summation path.
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y( t )  =  0 . 2 y ( t - l )  +  u{ t )  (VI.35)

where ut is white noise with variance 1.0. Adjusted 5 % confidence intervals were used 

to correct for small sample bias in the cumulative periodogram case (fco.os was set to 

1.315 instead of the asymptotic value of 1.36); cumulative periodogram tests rejected 

98.93% of the time. For the waveletgram tests we used Daubechies D8 wavelets. The 

waveletgram test with the first summation path rejected in 96.53% of the simulations 

and the waveletgram test with two summation paths rejected 94.19 % of the time. 

When we switched the AR parameter from 0.2 to 0.1 the cumulative periodogram 

rejected 55.82 % of the time and the waveletgram test with the first summation path 

rejected the null of randomness in 45.80 % of the simulations and the waveletgram  

test with two summation paths rejected in 37.32 % of the simulations.

To show the efficacy of the waveletgram test on nonstationary time series we 

considered a model in which the structure switches midway through the tim e series; 

at the midpoint of the tim e series we changed the autoregressive coefficient from 0.4 

to —0.4. We considered in each case 200,000 replications of samples of size 512 and 

used the Daubechies D8 wavelet for all the cumulative waveletgram tests. All tests 

were performed at a 5 % significance level. The cumulative periodogram test rejected 

61.94 % of the tim e whereas the cumulative waveletgram test rejected 97.51% of the 

time with the first summation path and 94.27% of the time when both summation  

paths were used. When the autoregressive parameter 0.2 was used instead of 0.4, 

the cumulative periodogram test rejected 10.04% of the tim e whereas the cumulative 

waveletgram test rejected 28.19% of the tim e with the first summation path and 

21.59% of the tim e when both summation paths were used. One expects that the 

relative performance of the cumulative waveletgram will be somewhat stronger in 

situations in which there is more than a single structural break or in which the 

structural change is continuous.
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One notes that in all the examples we have presented, inclusion of the second 

summation path actually results in a deterioration of statistical power. This is because 

the second summation path is intended to take into account more local features of 

the data and the first summation path sums across time at each frequency and hence 

has more global features; the first summation path is therefore the appropriate one 

when the model is close to stationary as is the case in our examples.

Another possibility is an adaptive waveletgram stopping rule which is based on 

wavelet packet best bases [47] [45] [44] [46] which are reviewed in Ch. VII. Briefly, 

wavelet packet bases are orthonormal bases which adapt to the properties of the data; 

for instance, a wavelet series does not represent some sine waves well, so if the data 

is a sine wave, the selected wavelet packet basis will be closer to the standard Fourier 

basis. The adaptive waveletgram test thus has the advantage over the cumulative 

periodogram tests and the cumulative waveletgram is that it does not depend on any 

a priori  assumptions about the nature of the stochastic process; instead the adaptive 

waveletgram test exploits an orthonormal representation which optimally combines 

time and frequency elements to minimize a global entropy criterion. This flexibility 

comes at a cost in that for the adaptive test confidence intervals must be wider than in 

any test based on a single orthonormal basis. These wider confidence intervals result 

in suboptimal performance when the type of departures from randomness can be 

neatly described by a single orthonormal basis or when the time-frequency properties 

of the tim e series are not parsimoniously described by waveforms. Confidence intervals 

differ for the adaptive waveletgram depending on the wavelet used in the analysis. 

Table VI.2 shows 5% confidence intervals for a Daubechies D 8 wavelet.

We next consider some specific examples of use of a cumulative waveletgram  

test and competing tests. The examples we try include a model with time-varying 

variances and a deterministic periodicity corrupted with noise. All simulations use 

200,000 replications. All waveletgram calculations use the Daubechies D8 wavelet.
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Sample Size Position path Both paths

64 2.14 2.22

128 2.19 2.26

256 2.22 2.28

512 2.25 2.29

1024 2.26 2.32

Table VL2: 5% simultaneous confidence intervals for the cumulative 
wavelet packet distribution test of randomness for the D8 
wavelet. In the simulations, the mean was not removed 
prior to analysis; the constants with the mean removed 
are slightly lower.

In each of the examples the mean was removed from the data before analysis. All 

waveletgram calculations use summation paths over tim e and frequency.

Time-Varying Variances

Models of time-varying variances are often used to model asset market behavior 

in financial economics [30] [70] [29] [145]. We consider a simple model of a tim e series 

with a time-varying variance:

(VI.36)

(t — to)
0.5

(V I.37)cr(i) — Ao +  Aj

where e(f) is an independent Gaussian random variable with variance 1. A sample 

realization is shown in Figure V I.13 for A0 =  0, Ai =  1, T  =  128, to =  64. In 

Table V I.3 we show results for fixed values of Ao, Ai. We also consider the case in 

which Aq at each point in time is a random variable equal to |Ao£(t)|. C(i) is an

independently distributed Gaussian random variable. The results for this case are
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1000

Figure VI. 13: Data from a time series with time-varying volatility pa­
rameters A0 =  0, Ai =  1, to — 64, T  =  128.

shown in Table V I.4. In all subsequent tables, we use the abbreviations CPG for 

Cumulative Periodogram Test, CWG for Cumulative Waveletgram Test and AWG 

for Adaptive Waveletgram Test.

The results show clearly that for this example the cumulative waveletgram test 

outperforms the cumulative periodogram test, as is to be expected given the non- 

stationarity in the simulated data. For our example with time-varying volatility, the

Ao Ai CPG AWG CWG

0.0 1.0 0.106 0.262 0.694

0.5 0.5 0.061 0.088 0.273

0.5 1.0 0.071 0.121 0.426

Table V I.3: Power of different randomness tests (level 5%) against the 
deterministic time-varying volatility model for cumula­
tive periodogram test (CPG), adaptive waveletgram test 
(APG ), and cumulative waveletgram test (CWG).
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Co >̂1 CPG AWG CWG

0.5 0.5 0.058 0.189 0.334

0.5 1.0 0.070 0.165 0.457

Table VI.4: Power of different randomness tests (level 5%) against 
the stochastic time-varying volatility model.

adaptive waveletgram achieves results intermediate between those of the cumulative 

periodogram and the cumulative waveletgram. In the case with hidden periodicities 

it was also basically able to achieve results intermediate between those of the cumula­

tive periodogram test and the cumulative waveletgram test so that from the examples 

it appears to achieve acceptable performance when applied to two radically different 

types of tim e series.

Deterministic Periodicity Corrupted with Noise

A classical application of the cumulative periodogram test is in detection of a 

hidden periodicity. We first consider a model where the data is generated by a single 

sinusoidal function corrupted by white noise eft):

y( t )  — sin ^2.0o;  ------------------+  ere(f) (V I.38)

We consider in particular an example with T  =  128, u> =  20.0 and a — 1.0. 

The data is shown in Figure VI. 14. In Figure VI, 15 we show that a cumulative 

waveletgram test at a 5 % level fails to reject the null hypothesis of randomness. A 

cumulative periodogram test narrowly rejects randomness (Figure V I.16) as does the 

adaptive waveletgram test (Figure VI. 17). Simulations indicate that a level 5% cumu­

lative periodogram test rejects 92% of the time. Table (VI.5) presents results of some 

detailed simulations. From the results, it is clear that the cumulative waveletgram  

test performs particularly poorly with high frequency waveforms; this should not be
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Figure VI. 14: High-frequency sine wave corrupted by random noise.

surprising as it is a direct consequence of the time-frequency localization imposed by 

wavelets (see shaded areas of Figure (V II.l)). From Table (V I.5) it is also clear that 

in this example the adaptive waveletgram performs significantly worse than either 

the cumulative waveletgram or the cumulative periodogram for very low frequency 

sinusoidal deterministic components. In general, however, the adaptive waveletgram  

achieves a performance level which is intermediate between the cumulative wavelet­

gram and the cumulative periodogram.

The cumulative waveletgram test has the advantage over the cumulative peri­

odogram test that it does not make the assumption of stationarity of the underlying 

stochastic process; instead the cumulative waveletgram test uses wavelet basis func­

tions which fix time and frequency elements. Though it is intended for analysis of tim e 

series whose properties are time-varying, the cumulative waveletgram test appears to 

yield acceptable performance against stationary alternatives.
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Figure VI. 15: Cumulative waveletgram for high-frequency sine wave 
corrupted by random noise. A Daubechies D8 wavelet 
was used in computing wavelet coefficients. The cumula­
tive waveletgram test fails to reject the null of random­
ness at a 5 % level.



www.manaraa.com

149

O.G

0 4

02

40 600 20

Figure VI. 16: Cumulative periodogram for high-frequency sine wave 
corrupted by random noise. The cumulative periodogram  
test rejects the null hypothesis of randomness at the 5% 
level. Simulated 5% confidence intervals were used with 
a constant equal to 1.27 instead of the asymptotic value 
of 1.36 due to small sample bias.
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tr hJ CPG AWG CWG

1.0 50.0 0.959 0.903 0.562

2.0 50.0 0.203 0.129 0.086

3.0 50.0 0.083 0.065 0.058

1.0 40.0 0.891 0.846 0.295

2.0 40.0 0.136 0.126 0.067

3.0 40.0 0.064 0.064 0.053

1.0 30.0 0.876 0.871 0.047

2.0 30.0 0.123 0.117 0.046

3.0 30.0 0.059 0.061 0.046

1.0 20.0 0.922 0.725 0.440

2.0 20.0 0.164 0.115 0.070

3.0 20.0 0.071 0.064 0.052

1.0 10.0 0.984 0.735 0.903

2.0 10.0 0.248 0.116 0.153

3.0 10.0 0.093 0.064 0.072

1.0 5.0 0.995 0.886 0.978

2.0 5.0 0.294 0.156 0.210

3.0 5.0 0.102 0.072 0.082

Table VI.5: Power of different randomness tests (level 5%) against 
the corrupted sine wave model.
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Figure VI. 17: Adaptive waveletgram for high-frequency sine wave cor­
rupted by random noise. Like the cumulative peri­
odogram test, this test rejects the null hypothesis of ran­
domness at the 5% level.

Other Stopping Rules

In this chapter, we have reviewed the possibility of a cumulative waveletgram  

stopping rule and compared performance with cumulative periodogram tests and an 

adaptive waveletgram test we introduce. One problem with the cumulative wavelet­

gram and adaptive waveletgram tests is that the orthonormal basis obtained is one 

of L2 on the real line and not L2 on a compact interval. It is possible, with some 

increase in complexity, to use wavelets on a finite interval as developed by [42] and 

use fast algorithms to calculate the appropriate coefficients.

There is an extensive econometric literature on structural change and model iden­

tification. It is useful to review why we have not used these criteria. An alternative 

approach to choosing a stopping rule would be to refine traditional criteria such as 

the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC)
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[1] [2] [3]. These criteria balance the total percentage of sample variance explained by 

a model with the need for parsimony. W hile such criteria could be measured easily 

in the autoregressive pursuit procedure, the statistical properties of such measures 

would have to be studied extensively because we use maximal model components 

instead of the next lag and also because we expect the statistical distribution to de­

pend on the number of model components; in any case, the statistical interpretation 

of information criteria is difficult and thus their primary usefulness comes from their 

practicality.
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C H A P T E R  V II

T IM E -F R E Q U E N C Y  S P E C T R A L  E ST IM A T IO N

The thesis develops a method for the analysis of nonstationary economic data 

so it is helpful to provide some special tools with which to visualize the properties 

of nonstationary economic and financial data. W ith stationary data, the frequency 

spectrum provides an excellent and intuitive variance decomposition of the data. 

W ith nonstationary data, the properties of the data change over time so we need a 

new type of variance decomposition analogous to the frequency spectrum

In developing these methods, it is helpful to consider a general review of the 

literature, both from economics and elsewhere, through the unifying concept of time- 

frequency spectral estimation; since the goal of classical tim e series analysis is a 

variance-covariance decomposition, it seems natural to focus attention on how appar­

ently dissimilar methods work to achieve the same goal. Our broad review is also 

useful for the comparisons with the literature and for various other developments in 

the thesis.

Before we do this, it is helpful to state what is the key idea in this chapter: the time 

varying spectrum is the Wigner-Ville transform of the estimated covariance matrix/ 

the parametric model estimated by autoregressive pursuit can be used to construct 

parametric spectral estimates as well as to find the ‘eigenvectors’ of a time series 

which define an optimal decomposition. The goal of this chapter is to clarify the

153



www.manaraa.com

154

previous sentence and relate it to the literature.

Literature Review

We summarize some of the competing methods which have been developed for the 

analysis of nonstationary time series. Since the applications of nonstationary time 

series methods are quite broad, it is not surprising that the methods come from a 

large variety of fields. Therefore, it is inevitable that some or most of these methods 

will be unfamiliar; indeed, many of the methods reviewed are based on frontier work 

and have never been used in economics or finance. The goal of this section is to 

give our conceptual view of how the method developed in the thesis fits into the 

broader literature and we will try to provide this view in as self-contained a manner 

as possible.

It is natural to divide the the field of nonstationary time series methods into two 

categories: (1) nonparametric and (2) parametric. Our approach lies somewhere in 

between as it involves selection of a best parametric model from a large family of po­

tential parametric models. Many aspects of the nonparametric approach have devel­

oped mainly in the engineering literature and hence will be less familiar to economists 

than parametric approaches. However, since nonparametric methods are receiving in­

creasing use in microeconometrics, it is reasonable that nonparametric methods for 

nonstationary tim e series will receive increasing attention in the economics literature 

in the future,1 We begin our review with nonparametric methods as such methods 

help focus attention on the essence of the problem as well as its difficulty.

1 M ost o f the work on nonparametric regression in econom ics focuses on estim ation o f nonlinear 
relationships (c.f., [100]) and this has also been the case in application o f such m ethods to tim e 
series (c.f. [86]). Application o f nonparametric m ethods to nonstationary  tim e Bcrics seem s relatively 
undeveloped at present in the econom etrics literature.
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Nonparametric Methods

Spectral analysis is a useful variance decomposition for stationary processes; how­

ever, for nonstationary processes, the interpretation of the spectrum is unclear. For 

some nonstationary processes, it is clear how to define the notion of a time-varying 

spectrum. For instance, if the stationary data generating process changes at some 

tim e r  to some other stationary data generating process then it is reasonable to 

consider definition of a time-varying spectrum as equal to the spectrum of the first 

process before r and that of the second process after r . In most practical situations, 

change is not instantaneous or the underlying nonstationarity is more fundamental.

For time-varying processes, it is helpful to move away from representation of the 

data in terms of basis functions which have time-invariant properties (e.g., e%kt where 

the frequency variable k is constant over tim e) to representation of the data in terms 

of basis functions which are jointly localized in the time and frequency domain. What 

“joint localization” means is that the basis function used to represent the data has 

a relatively compact Fourier space representation yet still has a relatively compact 

tim e domain representation. For instance, modulated Gaussian functions:

9k,bAx ) =  (V II.1)

characterized by parameters k, b, and s are one family of functions which meets these 

criteria.2 We note that as s —► oo these functions approach Fourier basis functions 

so that Fourier analysis can be considered as a special case of a more general type of 

data analysis.

We consider replacing Fourier analysis with expansion with respect to more general 

basis functions such as the family defined by Eq. (V II.1). To focus the discussion,

3 T his follows since the Fourier transform of a Gaussian is a Gaussian so that the functions decay 
exponentially in both the tim e and frequency dom ains.
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F requency

Figure VII. 1: The first few levels of a general multilayer decomposi­
tion. Boxes represent effective independent frequencies 
at the different levels. Note that wavelet bases (shaded 
boxes) have more precise frequency localization at low 
frequencies than at high frequencies.

we consider data X  and define a sample transform U as follows:

UX{a,b ,u)) =  j H  4> j  X ( t ) e 2*iwt di (VII.2)

When we fix a we have a frequency based transform; such a transform is often 

called a “windowed Fourier transform” and is appropriate in applications in which the 

underlying basis functions (or waveforms) change along identical tim e scales. When 

we fix u;/a, we have a scale based method; an example of such a method is the wavelet 

transform [130] [54] and such a method is appropriate in cases in which high frequency 

waveforms change much more rapidly than low frequency waveforms.

Eq. (VII.2) defines such a large number of representations for data that we will 

focus on only the orthonormal representations. The idea is represented in Figure 

(VII. 1) and the next few pages seek to explain at various levels exactly what Figure 

(VII. 1) means. Since the class of possible alternatives to a covariance-stationary sys­

tem  is large, it is helpful to outline in a general sense an overall framework in which to
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perform time series analysis without the usual covariance-stationarity assumption and 

without at the same tim e making arbitrary assumptions with just as little theoretical 

justification. The traditional econometric test for structural change is an F-test [38] 

performed after splitting the sample into two usually equal portions. Therefore, to be­

gin, we consider a univariate time series with length T  which for expository purposes 

only we will consider to be a power of 2. We now suppose that we are to divide up the 

time series into log2 T  separate orthonormal decompositions each of which involves 

dividing the tim e series into separate tim e series of length T j 2 3 where j  is an integer 

(log2 T  > j  >  0) and performing separate spectral decompositions of each partition 

at each j .  We choose an orthonormal decomposition in order to illustrate effective 

frequency localization; in many cases orthonormality is not desirable or effective. At 

j  =  0 there is only one partition and the decomposition is similar or equivalent to 

ordinary spectral analysis.

Since we will not in general be using Fourier modes, our interpretation of a fre­

quency here will be a loose one. W ith Fourier basis functions, there is an inherent 

symmetry in spectral analysis between positive and negative frequencies. Here, we 

are concerned only with a representation of a tim e series and have not yet discussed 

spectral estim ation for nonstationary processes; therefore, in the case of Fourier fre­

quencies, we will count both positive and negative frequencies in the total number of 

frequencies. At j  =  1, we have two partitions each of which enables us to resolve T j 2 

frequencies, and so on. Figure (V II.1) (ignoring the shading for now) illustrates this 

idea.

At the highest level of the diagram we have only 2 ‘frequencies’ but we have 

divided the interval into T j 2 separate subdivisions. As we progress down the levels 

of our diagram, we have more frequencies but fewer subdivisions in the tim e domain. 

We have put four levels in the diagram for reasons of simplicity; four levels imply 

a tim e series of only length 16 so that the corresponding diagram for actual time
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series such as occur in financial and macroeconomic time series would be extremely 

complicated. In fact, in practical applications, one may want to include data on a 

constant intermediate level so that the number of levels would be even more extensive. 

We only display the frequency representation in [0, tt] as we assume the frequency 

representation in [—7r, 0] is symmetrical.

Let us consider a sample of data { / m}m=i- There are a variety of ways to summa­

rize the data. One way is that, if we feel that the data has time-invariant properties, 

we can consider the Fourier transform of the data:

/c*o = E  (vn.3)
m = l

where k =  0 ,...T  — 1. With the Fourier transformed data, we might be able to 

summarize the data effectively in terms of only a few coefficients. However, the 

properties of the data might be changing over time so we might get more effective 

information about the data generating the process by dividing up the sample into two 

segments; one segment is [1, and the other segment is [y +  1,T]. On each segment 

we can take a Fourier transform. On the first segment we have:

/?(*) = E  (VII.4)
m = l

for k — 0, . . . \  and on the second segment we have:

£ ( * )  =  E  / - e‘  * (VI1-5)
m=y+l

for k =  0 , and where the notation refers to the nth segment of a series with p 

subdivisions. In general, it is simple to consider situations where the series has p =  2r 

subdivisions where 0 < r  <  loga(T). The general formula is:

( n + i ) £  irijt(m~ y
£ ”( * ) =  E  ^  (VII.6)

t n = ( n - l )  £ + 1
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so that n runs from 1 up to 2r and k from 0 to

When the series has two subdivisions, we have only half the number of Fourier 

coefficients we have than in the case when the series had only one subdivision. More 

generally, when there are p subdivisions, we have only p"1 as many Fourier coeffi­

cients at each subdivision. Since when we have more subdivisions, we have fewer 

‘frequencies’, we have more information about ‘when’ something happens but less 

information as to what exactly is happening. This tradeoff between the number of 

subdivisions and the amount of ‘frequency’ information we can obtain from the data 

is known as the ‘Heisenberg’ uncertainty principle; what this says essentially is that 

it is impossible to come up with a more clever scheme in which the product of the 

number of independent frequencies p-1 and the number of subdivisions p is not a 

constant.

Time-frequency spectral analysis can be thought of a way of a more sophisti­

cated way of dividing up the tim e domain and doing separate spectral analyses. For 

instance, one idea is to allow the frequency estimates to have a bandwidth which 

may vary across frequencies. Another idea is that, instead of using flat time-domain 

windows as in rolling spectral analysis, we use smooth time-domain windows. It 

is possible to construct various smooth frequency domain window functions which 

pieced together form an orthonormal basis of L2.

Such constructions are nontrivial; indeed, until several years ago, there were not 

believed to exist. The next section reviews some of the details of these constructions. 

It is therefore somewhat technical and can be skipped on a first reading. The material 

is used implicitly in various places in the thesis, including the choice of stopping rule. 

The rest of this paragraph reviews the few ideas from the next section which are 

important for later developments. If a tim e series has properties which vary over time, 

it is sensible to use wider windows to measure variations at low frequencies than at 

high frequencies because more data is required to accurately estim ate low frequency
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movements. The last sentence expresses the idea of a wavelet expansion. The shaded 

regions in Figure (VII. 1) show the effective time-frequency concentration of wavelet- 

type functions. In some cases, one may want to optimally combine orthonormal basis 

elements from the different levels to more accurately capture certain properties of a 

data set such as time-invariant components; this is the idea of wavelet packets. Both 

wavelets and wavelet packets result in orthonormal expansions which can be used in 

nonparametric spectral estimation.

W a v e lets  and  W a v e let P ack ets

Wavelets are basis functions of L2 with joint time-frequency localization and fre­

quency dependent bandwidth [54] [130] [39] [138] (for applications and recent theo­

retical developments, see [185]). Wavelet packets decompose wavelets into longer and 

shorter “waves” to better capture sharp spectral components and other data proper­

ties not well represented by the ordinary wavelet transform. A wavelet x  ■—» Tp(x) is 

a function such that:

€  L2 (V II.7)
M s

which requires that:

J  dxi>(x) =  0. (VII.8)

There exist wavelet functions tp(x) whose dilations and translations:

-  2 - ^ ( 2 - ^  -  (VII.9)

form an orthonormal basis of L2. We have focused on such wavelets in Ch. VI which

begins with a primer on wavelets.

In terms of Figure (V II.1), it will be helpful to discuss the sort of time-frequency 

localization wavelets impose. The localization of wavelets is illustrated by the shaded
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boxes. The type of localization we choose is to use a lot of information to estim ate low 

frequency components and much less data to estim ate high frequency components. A 

method which combines all information in the levels of Figure (VII. 1) would essentially 

use waves with different numbers of oscillations and would include as special cases 

(either approximately or exactly) the localization properties of wavelets and Fourier 

analysis. The number of possible decompositions given a fixed wavelet function is 

enormous (for instance with a sample size of 1024 there are approximately 1.8 x  103OS 

possibilities) so that the problem is difficult in general. Wavelet packets present one 

approach to an orthonormal decomposition which attem pts to approximately meet 

these criteria.

We consider the following equations:

P2r(a:) =  V 2 j 2 hkPr(2x -  k) (VII.10)
h

•f2r + l (x) =  y / 2 ' £ g kPr{ 2 x - k )  (V II .ll)
k

where P0 is some function $ which corresponds to a wavelet function V'- A given

function is expanded in terms of each of the Pr as well as its dilations. In terms

of Figure (VII. 1) any combination of basis functions which span frequency space 

(wavelets are one possibility, as are basis functions at a single level such as the bottom  

level) will form an orthonormal basis.

Writing Equations (VII.10) and (V II .ll)  in terms of Fourier transforms we have:

ParH  =.m(w)A(w) (V II.12)

where:

A r+i(w ) -  n(uj)PT(u}) (V II.13)
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=  ( V I U 4 )

=  (V IU 5 )

There exist filters m  and n which lead to orthonormal wavelet bases, Such filters 

and related literature are reviewed in [130] [52] [200].

Since the set of possible orthonormal basis functions (c.f., Fig (VII. 1) has a tree 

structure, the idea of the Coifman, Wickerhauser and Meyer algorithm is to compare 

the entropy of function expanded in terms of PT at scale3 s with the sum of the 

entropies of a function expanded in P2r at scale s +  1 and A r+i at scale s +  1, and 

to select the sequence with the minimum entropy and store its entropy. We begin 

at 5 =  0 and continue comparisons until we reach s =  smaa. or we select VTi3 for

each r. As we shall see in some of the comparisons between methods, the entropy

minimization method does not perform particularly well on noisy data.4

To summarize, the wavelet packet transform is an expansion of a function or a 

sequence such as a tim e series /  such that:

/(* )=  E  < f , D ‘Pr{ . - k ) > D ' P r ( x - k )  (V II.16)

where a B  is one of a set (B) of 2N admissible orthonormal bases with components:

{ D " a , ( .* i ) } £ i .  (v i i .17)

3 Scale s  means that the function is dilated to 2*Pr (2 'i) ,

4 Another cost function based on a Lp norm (p <  2) for wavelet packets was announced at Stanford 
University in late Fall, 1993 by statisticians David Donoho and Ian Johnstone. The motivation for 
the new choice of cost function was to improve performance with noisy data. Donoho and Johnstone 
[62] [61] have also developed a nonparametric estimator for noisy functions and densities based on 
shrinkage of wavelet coefficients; this method would work for an arbitrary wavelet packet basis but 
to our knowledge its statistical properties have not been developed in the case in which disturbances 
are not independent, the relevant case in time series.
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Wavelets correspond to one such possible orthonormal set with r; =  1,5; =  i  for 

all 1 <  i <  N  and =  0, 3^ — log2 N.  A windowed Fourier transform corresponds 

to Si — s and r; =  i for 1 <  i <  N.  The best basis is the orthonormal basis B* £ B 

which achieves the minimum entropy of any orthonormal basis in the set B.

As estim ates of a time-varying spectrum, we find wavelet and wavelet packet es­

timates are very difficult to interpret in the presence of noise (because white noise 

has a wavelet packet decomposition which is spread out over all possible basis sets, 

most of which vary over time); on the other hand, wavelet and wavelet packet de­

compositions seem to provide more parsimonious representations of many economic 

tim e series than Fourier decompositions. Such decompositions can be used in various 

ways to measure how stationary a time series is; for instance, the ‘best’ level of Fig. 

(V II.l) according to a Coifman/Meyer/W ickerhauser entropic criterion is a division 

of monthly money supply data (CITIBASE FM 1D2) into two year segments whereas 

the best division for U.S. GNP data is the full sample, suggesting stationarity.5

In this section, we have provided examples of some members of the family of 

transforms defined by Eq. (V II.2). We have yet to review technical definitions of 

nonstationary spectral estimators. The goal of the next section is to address these 

questions.

N onstationary Spectral Estim ation

With ordinary spectral analysis, the periodogram is estim ated by squaring the 

Fourier transform of the data. This works because the spectrum is the Fourier trans­

form of the autocovariance function which is a convolution of the data with itself and

5 U.S. GNP data  from CITIBASE aeries GNPQ (log differences) from 1961:4 to 1993:3. Money 
supply data  from 1951:2 to 1993:9. Calculations used a  Daubechies D8 wavelet. On the issue of 
division of a  time series with tim e domain algorithms, the development of so-called lapped orthogonal 
transforms [132](briefly, flat time domain windows with smooth dropoff bu t which still result in an 
orthonormal basis when cosine or sine functions are used) present an alternative to wavelet packets 
if a  smooth time domain window function is to be used.
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Figure VII.2: Wavelet packet best basis decomposition of an AR(1) 
process in the time-frequency plane. Frequency is on the 
vertical axis.
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Figure VII.3: Wavelet decomposition of an AR(1) process in the time- 
frequency plane, Frequency is on the vertical axis.

convolution in the tim e domain is equivalent to multiplication in the frequency do­

main. When the tim e series is not globally stationary, the standard approach which 

assumes stationarity may lead to misleading conclusions about the spectral properties 

of the data. A further problem is that there is no accepted definition of a time-varying 

spectrum in the literature. We now suggest how wavelets and wavelet packets relate 

to spectral estimates and more traditional methods of nonstationary spectral analysis 

such as rolling spectral analysis. Furthermore, we explain how such methods as well 

as traditional methods and the method developed in the thesis fit into our defintion 

of a time-varying spectrum.

A useful starting point is to consider Cohen’s class of time-frequency distributions 

[43] [71]. The Cohen’s class representation for a function /  is defined as follows:

CV(‘,U>) = / /n(r - t , n) f ( r + £)/•(r - \ ) ' - a ™ d r in (V II.18)
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Here C ( t }(jj) is the time-frequency distribution, fi(r — t ,n )  is the kernel of the 

time-frequency distribution, and / ( f )  is the time series. Cohen’s class and the time- 

frequency estimators are for univariate time series. The Cohen’s class is usually 

defined in a slightly different but equivalent way:6

Cs { t , u ) ^ j  j  j  K i a ^ f i r  +  ^ r i r - ^ e ^ ^ ' ^ - V d t x d r d n  (VII.19)

There is a relationship between the Cohen’s class representation of a function and 

a nonstationary spectral estimator. To see this relationship, we let the function /  be a 

stochastic process X  corresponding to the observed data. We then take expectations:

C x i l . u )  =  b ( /  /  s i ( r - t , n ) X ( r  +  ^ ) X ' ( r  -  A-

=  J  J { l ( r - t , n ) E  ( x ( r  +  ^ ) X' ( r  -  ^ ) )  e"*'"" dr i n  (VII.20)

where for notational simplicity we have used the same notation to refer to the expected 

and sample values of the Cohen’s class time-frequency distribution. We define the 

local autocovariance kernel for the data X :

K x { t u U )  =  E ( X { U ) X * ( t 2)) (V II.21)

We define:

/ DO w i  w

^  e~2™ mK x (t +  - , t  -  - ) d m  (VII.22)

W x { t 7t*>) is a Fourier transform of a local autocovariance kernel and it is an exam ­

ple of a Cohen’s class distribution with ff(a , n) =  S(a) .7 This particular distribution

6 The original Cohen’s class definition was presented in terms of the phase space approach to
quantum mechanics. Position and momentum (or capital stock and shadow value in economic
terminology) arc the variables there instead of time and frequency.

7 £(») is Dirac’s delta function.
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is called the Wigner-Ville distribution. The theory of random functions or stochastic 

processes differs from that of ordinary functions in that a bilinear form such as the 

Wigner-Ville distribution is necessary to characterize the stochastic process whereas 

a linear form is sufficient to characterize each realization. This distinction is impor­

tant to some degree for understanding the way in which we use some methods for the 

analysis of ordinary functions such as Mallat and Zhang’s matching pursuit algorithm  

and wavelet transforms.

Since the Wigner-Ville distribution has the problem that it can sometimes be

negative and that the Wigner-Ville transform of two separate tim e series is not

additive, it is often useful to consider a smoothed Wigner-Ville distribution with

f l ( a (Ti) =  8(a)h(n ):

/ oo YTL 771
e- 2™ m K x (t  +  _  t _  - ) k ( m ) d m  (VII.23)

- oo Z J*

For discrete tim e series, the natural modification of the Cohen’s class distribution 

is [134]:

OO OO

Cs { t , u )  =  2 £  £  S l ( n - t , m ) f ( t  +  m ) f \ t - m ) e ~ 4^  (VII.24)
771=— DO n — — oo

which also has a clear interpretation in terms of a time-varying spectral estim ate of 

a locally stationary process. In terms of practical applications, the issue would then 

seem to be only the choice of an appropriate kernel fl.

For illustrative purposes, we consider a Wigner-Ville distribution of a complex 

exponential f ( t )  =  e2™'1:

Cf (t,u>) =  J  ^ -  y ) / ( i  +  j ) d m

J — oo

=  P  =  8 { uj -  a /) (VII.25)
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However, if we were to consider a function which is the sum of complex exponen­

tials such as:

f ( t )  =  eW t  +  e2* ^ ‘ (VII.26)

the Wigner-Ville distribution will n o t  be the sum of the Wigner-Ville distributions of 

individual elements. 8 In fact, the Wigner-Ville distribution need not be positive. 9 

This and other properties of basic time-frequency distributions are reviewed in 

[28]. The nonadditivity comes from cross-terms which can be controlled but not 

eliminated through an appropriate choice of kernel for the Cohen’s class [28]. Indeed, 

the development of Cohen’s class estimators was motivated by the need to eliminate or 

minimize the effects of cross-terms in the Cohen’s class distribution. A fundamental

8 Thus, the W igner-Ville representation o f a  tim e-invariant process usually will  not reduce to  the 
periodogram . T he statem ents by Priestley in [169] [170] about this m atter, while not incorrect, refer 
to a slightly different situation  (in which the correlation function o f the data is known) and hence 
are m isleading.

9 For an exam ple, let us consider the W igner-Ville distribution o f a  periodic function:

f [ t )  =  I  “ "("oO if  - y  <  t <  t  (V II.27)
1 0 otherwise

In this case, since the sine function is an odd function, at t  =  0, w =  0, the W igner-Ville 
distribution is:

w ( 0 ,0 )  =3 j  ^ s in (w o ^ )s in (-w 0 “ )dT

=  —2 | | / | | 3 <  0. (V II.28)

A s can be verified com putationally, the W igner-Ville distribution o f a  sine wave also has som e 
other peculiarities. Thus, even-for representing very sim ple functions such as a  sine wave, the 
W igner-Ville distribution has som e unusual properties. W indowing is hence needed in practice to  
achieve better estim ates. Another solution is to use the Hilbert transform:

(V II.29)

where * represents convolution. Since the Hilbert transform o f a sine is a cosine, the analytic signal 
=  /(* )  +  *7?/(t) avoids any pathologies in the W igner-Ville representation.
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practical problem in using Cohen’s class of time-frequency distributions is that the 

results may depend on the choice of kernel.

One outgrowth of the matching pursuit methodology of Mallat and Zhang [131] is 

a new approach to time-frequency spectral estimation. Mallat and Zhang focused on 

non-orthonormal expansions of functions; here, we focus on orthonormal expansions 

and stochastic data, but the ideas are the same. It seems reasonable, given an or­

thonormal expansion of a function such as that in a wavelet basis or a wavelet packet 

basis, to define the nonstationary spectra as:

s ( t , w )  =  5 2 c ; c , i(t,u,) (v ii.30)
i

where (7; are the coefficients of an orthonormal expansion and Cci(t,uj) is a Cohen’s 

class distribution of the basis function e,-.10 One motivation for Eq. (VII.30) is that 

the total sample variance in the data is the sum over i of the squared coefficients Cf  so 

that the spectrum defined by Eq. (VII.30) is meaningful as a variance decomposition. 

Furthermore, the decomposition is economically meaningful in that it is in terms of 

building blocks which capture jointly the tim e and the frequency variation in the data. 

The spectral estimator defined by Eq. (VII.30) in addition has the advantage that 

when the orthonormal basis is the Fourier basis and the Wigner-Ville distribution 

is used, the spectral estim ate is the same as the periodogram. When a windowed 

W igner-Ville distribution is used and the basis functions are complex exponentials, 

the estim ate is a weighted periodogram. On the other hand, if wavelet functions or 

wavelet functions are used, the spectral estimates will likely vary over tim e.11

To see the ideas clearly, we revert to the finite-dimensional setting in which the

10 For instance, for standard Fourier basis functions and a  W igner-Ville distribution kernel, see 
Eq. (V II.25).

11 T he disadvantage o f an approach based on Eq. (V II.30) iB that ‘m arginals’ m ay not be consistent; 
by this what is m eant is that the integral o f the spectral estim ate over tim e m ay not be equal to  the 
periodogram or the sm oothed periodogram o f the tim e series.
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time series is a vector /  with elements fi ,  i  =  1 ,..7 \ Assuming /  is mean zero and 

real, the covariance matrix of /  is given by:

Cij  =  £ ( / . / , ) .  ( V I I . 3 1 )

We assume the matrix Ci j  is positive-definite. We recall the expansion:

( V I I . 3 2 )
i

where e; are orthonormal basis functions. We recall also that this equation was 

used to derive a limiting stochastic integral representation of /  (such as Eq. (N .7)). 

The “increment” here is <  / ,  e; > . For orthogonality of increments and a positive 

“spectral” measure, we require that:

E ( <  f ,  e; > <  ej) f  > )  =  SijXi >  0 (V II.33)

We note that:

i ? ( < / , e i > < e i ) / > )  =  £ ( £ A ( e; ) j t£ /< (e i) i)
k i

=  (VII .34)

where (ej)jt denotes the fcth element of the vector e;. Suppose the e; are the eigenvec­

tors of the covariance matrix of the tim e series. Then it follows that:

2̂ Ck,i(e*)fc(ei)i = £ Ai(ei)*(ei)k
k,l k

=  Xj  <  e;, e j  > =  (V II .35)

as required. Furthermore, if the covariance matrix is positive definite, all eigenvalues 

are positive. For a stationary time series, the eigenvectors are complex exponentials
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and thus Fourier analysis (which uses complex exponentials as basis functions) is op­

timal. However, for nonstationary time series, the eigenvectors are no longer complex 

exponentials so that different orthonormal basis functions are required to achieve an 

orthogonal increment process representation of the data.

The infinite-dimensional analog of the finite dimensional theory is to compute the 

eigenvalues of the (self-adjoint) covariance operator and define the spectrum in terms 

of the eigenfunctions of this operator.

Another nonparametric approach to nonstationary tim e series is the evolutionary 

spectrum of Priestley [167] [169] [170]. The idea of the evolutionary spectrum is to  

follow [15] and consider a generalized stochastic integral representation of the data 

X .  This involves using stochastic integral representation:

X { i )  =  J  cf>t(u>)dZ{w)

where dZ  is an orthogonal increment process such that:

E{dZ{u))dZ{u')) =  dFx (io)5(u> -  u,') (V II.37)

where Fx  is the cumulative ‘spectral* distribution of the data X  in terms of com­

plex exponentials. As stated in Priestley’s original paper ([167], p. 205-7) earlier 

approaches such as that of Cramer [50] assumed only harmonizability so that the dZ 

need not be an orthogonal process.12

Priestley considers functions 4>t{^) of the form: 13

13 One extant definition o f  a tim e-varying spectrum  at the tim e Priestley developed ‘evolutionary  
spectral’ analysis was that of the instantaneous spectrum  [158]. W hile we do not review it in 
detail here, it has shares similar conceptual problems with evolutionary spectral analysis in that the 
spectrum  is only well-defined in the lim it of infinite sam ples.

13 Priestley considers a  som ewhat more general fam ily o f “oscillatory functions” with nonlinear 
phase but justifies Eq. (V II.38) in term s o f change o f variables in integration ([169], p. 823-4.)

(VII.36)
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4>t { oj) =  A ( t }Lj)ei!i,t. 

He defines the evolutionary spectrum to be;

(VII.38)

g ( u , t )  =  dFx {w) \A{ t ,u ) \2 (VII.39)

The first main example in Priestley’s original paper is ([167], p. 209):

x{t)  =  f  S ( t  — u)ht(u)du
J — OO

A ( t , u j ) ~  I  exuuht(u)du
J — CO

(VII.40)

(VII.41)

S( t )  =  eiuidZ{u)  (VII.42)
J — OO

so that S  is a stationary process with spectrum d/z(o>). The evolutionary spectrum  

of x  is given by:

E(t,u>) =  dfi(u})\A(t,uj)\2 (VII.43)

which follows since a: is a convolution of S  with h\ for any fixed t } the Fourier transform 

diagonalizes the convolution operator and one can then use Parseval’s Theorem at any 

fixed t  to derive the result. The problem with this example is that the convolution 

operator is represented by a matrix which is now time-dependent so that it is not 

diagonalized by a Fourier transform.

Another example in Priestley’s paper ([167], p. 210) illustrates the same point. 

Let y  be a stationary process and define s ( f )  =  c(t )y[ t )  where it is assumed that 

c(i) is slowly varying. It then follows that the evolutionary spectrum is E(t ,uj )  ~  

|c (i) |a£y(u;) where Sv(uj) is the spectrum of y.  Now, we suppose that y( t )  is a process 

with mainly high-frequency variation; specifically we let:
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y( i )  =  - 0 . 5 e ( i - l )  +  e(i)- (VII.44)

We define:

c(i) =  E 0 . 8  (VII.45)
j —O

so that e(i) is slowly varying and time-dependent. However, the spectrum of x( t )  is 

independent of time.

To see the technical problem with Priestley’s representation, we replace the ex­

pression:

m  = J  " ) (VII.46)

with the finite sample size expression:

/ «  =  E  < / . = ! >  s . (V II- « )
i

where gi =  and are complex exponentials. It is clear then that dZ is no

longer the inner product of /  with complex exponentials so that Eq. (VII.46) is no 

longer really an orthogonal increment representation for f ( i ) .

For dZ  to be an orthogonal increment process for the data (and not for some phan­

tom  function), Eq. (VII.38) must be the eigenfunctions of the (self-adjoint) covariance 

operator for the tim e series. One alternative definition of an evolutionary spectrum  

would be to define an orthogonal increment process in terms of inner products of

the data /  with < t̂(w). The problem with this is that in the most likely cases where

A(t,u>) — ft(f), the logic of the approach is weakened by some recent mathematical 

results which show that orthonormal bases of the form:

em„ =  g(t - (VII.48)
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for m, n 6  Z must have g with somewhat pathological properties either in the tim e or 

frequency domain. Thus, there does not exist a well-defined local Fourier expansion in 

terms of complex exponentials multiplied by a slowly varying function, For instance, 

g may be an indicator function in which case its Fourier transform oscillates much 

and decays slowly. The window function g may also be a sine function: j(a:) =  

■ Here, the window function decays slowly and oscillates quite a bit. Another 

function which has slightly better properties is developed in [109]. The relevant 

theorem is due to Balian [10] and Low [122]. Some technical corrections to the 

original proof were found by Coifman and Semmes and are reviewed in [53] [17]. The 

proof has subsequently been extended to certain nontrivial nonorthonormal bases. 

The statem ent of the theorem is:

T h eo rem  12 Suppose emjl ( m ,n  £ l )  where:

(VII.49)

form an orthonormal basis of  L2 on the real line. Either the window function is 

irregular in the t ime domain:

J  x 2\g(x)\2 dx — oo

or in the frequency domain:

J u 2\g(u)\2 dio ~  oo (V II.51)

W hat this theorem says essentially is that there does not exist a well-defined local 

Fourier basis which uses complex exponentials and a separable local tim e factor as 

is implicitly assumed by methods such as evolutionary spectral analysis and complex 

demodulation [198]; this theorem provided the motivation for investigating other 

types of local spectral analysis such as the wavelet transform and the wavelet packet

(V II.50)
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transform. Since the theoretical covariance matrix is usually not known, methods 

such as the wavelet packet decomposition aim to provide a representation of the data 

in terms of an approximate orthogonal increment process. The point of this section 

is that since each independent orthonormal basis function has a representation in 

terms of a time-frequency distribution, an appropriate time-frequency representation 

of stochastic data is in terms of a weighted sum over these individual tirne-frequency 

components. As we have suggested, Mallat and Zhang [131] have made the same 

point for the time-frequency representation of deterministic functions in terms of 

nonorthogonal waveforms.

Parametric Methods

The disadvantage of Fourier analysis for the analysis of economic tim e series is 

that it is nonparametric; economic tim e series data are frequently limited in length 

so that parametric methods are often more useful. Estimates of the spectrum can be 

obtained from the parametric models. If we consider the univariate ARM A model:

B ( L ) X ( t )  =  A (L )u ( t ) (VII.52)

where L is a lag operator. If u(t )  is white noise the spectrum of the data X  is:

(VIL63>
Estimates of the coefficients in the lag polynomials A  and B  hence lead to paramet­

ric spectral estimates. We have already defined a notion of time-dependent spectra 

in terms of sums of Cohen’s class distributions of orthonormal basis functions. We 

have yet to describe how such a definition carries over to the parametric case when 

coefficients are time-varying.

One possible approach is to compute a parametric spectral estim ate for each point 

in tim e [195]; this is, however, inconsistent as there is no such thing as a fully local
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spectrum. However, it is the case that parametric estim ates define implicitly an 

estim ated autocovariance matrix. The spectrum is then the weighted sum of Cohen’s 

class distributions of the eigenvectors; the eigenvalues provide the weights. This 

approach has two advantages: it provides a natural representation of the data in 

terms of an orthogonal increment process and it concentrates the maximal spectral 

energy in the largest component.

Once the form of the autoregressive model is known, we can compute time- 

dependent spectra from the implied covariance matrix. However, estim ation of the 

autoregressive model or the covariance matrix in the nonstationary case is far from 

straightforward and we have argued that nonparametric estimation of such a model 

might be difficult. One intuitive reason for this is that analysis of nonstationary tim e 

series present many of the same problems as short tim e series in that nonstationarity 

implies that the available data is essentially local and effective sample sizes are much 

shorter than if the data had time-invariant properties. Therefore, parametric methods 

which impose structure on the data are often even more necessary for nonstationary 

tim e series than for stationary time series.

If we knew exactly how the data evolved over time or if we knew an appropriate 

form of the autoregressive model, we could let the lag coefficients depend explicitly  

on t and use ordinary least squares. For instance, suppose we believed that the data 

generating process was a first order autoregressive process but with time-varying 

coefficients which evolved according to some function g(t) .  We then could estim ate 

the parameter /? in the equation:

y{ t )  =  {3g(t)y(i  -  1) +  e(t) (VII.54)

by ordinary least squares. However, we ordinarily do not know the function 3 (i). One 

possibility (which in fact we experiment with in Ch. I ll)  would be to estim ate the 

function g(t )  nonparametrically:
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. = ^ (t) = Z M t - s M s h U - i )  ( V I I . 5 5 )

-  3)y{s ~  l ) 2

where ti>i and w 2 are kernels. However, while such an approach can capture major 

modelling errors, the results are heavily influenced by choice of bandwidth and often 

it is necessary to impose more structure on the data. A related approach to estimation  

of time-varying parameters would be to discount past observations in estimating the 

least squares coefficient at every point in time; such a procedure could be performed 

recursively.

Another way to impose more structure on the data is to make the coefficients in 

a model state-dependent. Thus, the function £f(i) may be replaced by some function 

h(x)  where x is a vector of state variables. Such an approach to tim e series modelling is 

we believe correctly labelled by Priestley [170] as non-linear. Indeed, major classes of 

non-linear time series models such as the bilinear times series model, the exponential 

autoregressive model and the threshold time series model are special cases of the 

state-dependent model developed in [168]. These models usually can be estimated  

by maximum likelihood methods, so that provided the parameters are identified, 

confidence intervals can be calculated. However, since the models are nonlinear and 

state-dependent, the interpretation of time-frequency spectra which might be implied 

by such models is somewhat murky.

One interesting example of a state-dependent model is that of the hidden Markov 

model [173] [91] [172] in which there is a Markovian transition density between a finite 

number of states. In each state, there is a conditional distribution of the observable 

given the state variable. Such a model can be estimated by maximum likelihood 

methods. Some economic applications have been to business cycle dating [91] and 

exchange rates [68].

In the state-dependent model, parameters depend in a known way on states so 

that for instance the first autoregressive coefficient may follow a random walk in
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time. A state-dependent model may be identified by first estim ating (using projection 

pursuit regression or average derivatives) by nonparametric methods the functional 

dependence of a local kernel estimate of the first autoregressive coefficients on states 

x.

The most relevant state dependent models for the work in the thesis are models 

of the form:

y(n) =  (3(n)y(n -  1) +  e(n) (VII.56)

0(n )  =  Aj3{n -  1) +  B{L)r}{n)  (VII.57)

where B { L ) is a lag operator and T}(n) is noise. It is straightforward to generalize

Eq. (VII.56) and Eq. (VII.57) to the case where many lags influence the current

value y(n). There is a substantial literature in statistics and econometrics about such 

random coefficient models especially where the regressor values such as y(n  — 1) are 

treated as fixed.14. Some important results include:

•  Random coefficient models can be rewritten as regression models with het- 

eroskedastic disturbances [155] [48] or treated by state space methods; in gen­

eral, the two approaches are equivalent [155] (in terms of the implied likelihood 

function).

•  There has been a study of the stability of the univariate autoregressive A.R(1) 

model when the autoregressive parameter itself follows an autoregressive process 

[205].

• Asym ptotic properties of estimates, including efficiency, consistency and asymp­

totic normality, are studied in [48] [155]. A deficiency is that the theorems on

14 Exam ples o f econom ic applications o f random coefficient m odels include [176] [117] [199] [177]
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efficiency and consistency treat the regressors y (n  — 1) as nonstochastic.

•  There has been extensive study of the case in which /3(n) — f30 +  e for some 

random e [148].

In general, it is known that [21] adaptive estimates of the parameter tend to 

follow:

(3(n) =  0 ( n  -  1) +  K nH (0 ( n  -  1), y(n -  1)) (VII.58)

where K n is a “gain” factor, H  is an updating rule and y is the data. The updating 

rules for /? may also depend strongly on priors. The updating rule for /3(n) can be, 

for instance, examined using dynamical systems theory [21].

The key aspect of the state dependent approach is an hypothesized model for the 

dependence of parameters on states. This parametric restriction, sometimes coupled 

with Bayesian priors (c.f., [60]), provides the means to effectively capture many types 

of ‘time-varying* parameters.

The unifying concept in our literature survey is the issue of time-frequency spectral 

estimation. When assessing state dependent models, the issue is whether they produce 

time-dependent spectra which are nonstationary. For the purpose of comparisons in 

the thesis, we will largely treat realizations of stochastically time-varying parameters 

as deterministic functions. Technically, to handle such models in our framework, 

we would need to consider characterization of the spectral properties of nonlinear 

operators.15

16 Extensions o f  definitions o f  tim e-varying spectra to nonlinear frameworks such as ARCH m odels 
are interesting topics for future research.
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Where Autoregressive Pursuit Fits In

In the thesis, we do not develop further nonparametric methods and we do not 

work with standard parametric methods such as state-dependent models. Rather, we 

develop a new approach based on the idea of selecting a best parametric model from 

a large family of potential parametric models.

Nonparametric methods have the disadvantage of weak performance relative to 

parametric methods when the true model is close to the hypothesized parametric 

model. In addition, our results in the thesis indicate that nonparametric tim e series 

analysis methods such as the wavelet packet transform seem to achieve uneven results 

in terms of capturing the tim e varying properties of stochastic data.

On the other hand, parametric methods lack flexibility. If we wish to understand 

the time-varying nature of economic activity, parametric methods make strong a 

priori assumptions which may be unreasonable given the data. Our results in the 

thesis indicate that often time-variation in parameters can lead to serious biases 

in estimates of autoregressive parameters. Furthermore, it is usual in tim e series 

research to try many different potential parametric models; this is, for instance, the 

idea behind the use of model identification criteria such as the Akaike Information 

Criterion [1]. Such an approach suffers from pre-test selection bias.

We now summarize the new parametric approach to nonstationary spectral esti­

mation which follows from the thesis:

•  Compute estim ates of an autoregressive or other tim e series model using Au­

toregressive Pursuit.

•  Compute the implied covariance matrix for the time series.

•  Compute the Wigner-Ville or Cohen’s class distribution of the covariance ma­

trix. Alternatively, compute the Wigner-Ville or Cohen’s class distribution of
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the implied eigenvectors (or, for continuous tim e series, eigenfunctions) of the 

covariance matrix (or, for continuous time series, covariance operator).

Appendix G proves some results relating to the implementation of nonstationary 

spectral estim ation with Autoregressive Pursuit.
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E C O N O M IC  E X A M PL E S

To show that the univariate autoregressive techniques are practical, we illustrate 

their usefulness with some financial and macroeconomic data and show how the results 

differ from more standard approaches. In terms of macroeconomic data, we examine 

GNP data. In terms of financial data, we examine the behavior of the Standard and 

Poor’s daily returns.

Financial Data

We examine Standard and Poor’s daily returns data from July, 1962 up to Dec, 

1992 or 767S trading days. Statistics for the data are in Table (V III.l). We note very 

strong excess kurtosis, something which led earlier researchers such as Mandelbrot 

[133] to suggest that stock returns were drawn from distributions with thick tails.1

To examine the local properties of the correlations in the data, we consider kernel 

estimators of local autocorrelations such as we used in Ch. I ll for our examples. In 

Fig. (VIII.2) we show rolling autoregressive estimates of the one day autocorrela­

tion where we compute estimates for 400 days at a time. In Fig. (VIII.3) we show

1 Most o f the kurtosis com es from the 1987 stock market crash. W hen we truncate the sam ple 
on the day before the crash, kurtosis drops to 2.54 and when we elim inate the crash; if we ju st drop 
the day o f the crash from the sam ple, kurtosis does not drop so much.

182
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Mean 0.000307058

S.Dev. 0.00882708

Skewness -1.56616

Kurtosis 42.8138

Table VIII.l: Statistics for the Standard and Poor’s 500 index 1962- 
1992.

4a

a
a 002

Figure VIII.l: Return density for pre-1987 crash stock market compared 
with normal distribution with estim ated parameters.
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Figure VIII.2: Rolling estimates of autocorrelations for stock returns.

rolling estimates of one day autocorrelations with a Gaussian window with bandwidth 

a  =  200.2 We note that there is apparent random walk behavior in Fig. (VIII.2); the 

autoregressive parameter appears to have a unit root and first differences of the au­

toregressive parameter do not seem to have nonzero autocorrelations. In Appendix E, 

we show that the theoretical autocorrelations for the tim e difference of autoregressive 

parameters for stationary A i2 (l) processes converge to zero as the size of the window 

over which rolling autoregressions are computed goes to infinity.3

First and second order autoregressive model estimates for the data are:

y( t )  =  0.000267914 +  0.127097y(t — 1)

(0.0000999) (0.0113226) (V III.l)

y( t )  =  0.000278903 +  0.132298y(i -  1) -  0.0409129y(f -  2)

3 W e show 5% confidence intervals which were com puted by: (1) using a Gaussian window with  
bandwidth cr =  200 on the residual to  estim ate the variance o f the disturbance; (2) assum ing an 
effective bandwidth o f T  — 400. For Fig. (V III.2) confidence intervals com puted by such a m ethod  
are o f sim ilar w idth but are quite jagged and hence are not shown.

3 The lim iting distribution is not a Brownian m otion because the lack o f autocorrelations only 
occurs at lags less than the length o f the window.
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Figure VIII.3: Rolling estim ates of autocorrelations for stock returns 
with Gaussian windows.

(0.0000996) (0.0114056) (0.0114056) (VIII.2)

With the standard approach one would add lag lengths until a stopping criterion 

such as the Akaike Information Criterion suggested an optimal lag length and then 

the method would be used for prediction and the like. In the case of the stock 

market data, after the second lag, most of the lag estimates with small lags do not 

appear statistically significant. One would then stop the analysis after the second 

lag. In macroeconomic data, in particular, this is problematic because one might 

want to include the effects of seasonals and annual effects and small lags might be 

insignificant.4

One simple application of the method proposed here is simply to select the op­

timal model components to include from the class of all possible Box-Jenkins AR  

models. We consider a set of potential model components all of which have constant 

windows which span the whole length of the time series data. We consider 1200 dif­

ferent lags and note the order of the selected model components. The selected model

4 This point is illustrated well in a  paper by A . Hall [88] on m onthly data  for inventories (in the 
stock market exam ple, the corresponding point could be m ade w ith respect to m ean reversion at 
long horizons). Conventional test criteria often select small lag lengths and thus result in ignoring 
effects at annual frequencies (lag 12). The advantage o f adding a m axim al m odel com ponent at each 
iteration i3 that overparametcrization is avoided.
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Iteration Lag Selected Coefficient Std. Error

1 1 0.127097 0.0113

2 746 -0.049727 0.0118

3 59 0.0407214 0.0113

4 2 -0.0410548 0.0114

5 158 -0.0395326 0.0113

6 32 0.0364563 0.0112846

7 1129 -0.037934 0.01211

8 55 -0.0335363 0.0112783

9 116 -0.0330502 0.0112924

10 26 -0.0320167 0.01127

Table VIII.2: Selected global model components for the Standard and 
Poor’s 500 index 1962-1992.

components are shown in Table (VIII.2).5 The results show several interesting things. 

First, the long horizon coefficients are all negative (though weak) and suggestive of 

mean reversion. Second, the coefficients appear to decay very slowly as more model 

components are added which suggests some problems with the model. Indeed, ten 

model components only capture 2.9% of the sample variance of tim e series which 

suggests that models with constant coefficients are not very useful with this type of 

data; by comparison a single model component for a first order autoregressive model 

with autoregressive parameter 0.9 picks up an average 81% of the sample variance 

of the data. Still, all the ten model components selected are statistically significant 

by traditional criteria. Since robustness is an issue here because we have used many 

model components, we examine a decomposition for an autoregressive process with

5 Coefficient estim ates and standard errors arc based on the regression coefficient at the stage at 
which the m odel com ponent is added.
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vlteration Lag Selected Coefficient Std. Err

1 1 0.201944 0.01118

2 888 0.0433596 0.01117

3 800 0.0388525 0.0117475

4 241 -0.0335004 0.01131

5 926 0.0355094 0.0118

6 6 -0.0321441 0.01115

7 971 0.0341302 0.011876

8 1056 0.03283245 0.0119313

9 775 0.0318119 0.0117014

10 186 -0.0304866 0.0112488

Table VIII.3: Selected global model components for autoregressive con­
trol series.

autoregressive parameter 0.2 and exactly the same sample size. The corresponding 

table to Table (VIII.2) for the autoregressive model is Table (VIII.3). Table (VIII.3) 

suggests to us that the first model component for the stock market is statistically  

significant but the others are unlikely to be.

The model estimated after two model components is:6

y( t )  =  0.000281631 +  0.126299 y{ t  -  1) -  0.0497277y(f -  746)

(0.0000993) (0.0113112) (0.0118563) (VIII.3)

While this model does not fit the data well, it nevertheless illustrates how our 

methods can be effectively used to select proper models in situations where it would be

G We note th at the way the regression is calculated, we effectively assum e that y ( i )  — 0 for £ <  0. 
Thus, we do not drop the first 746 observations.
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Figure VIII.4: Correlations of Standard and Poor’s 500 daily returns 
(CRSP) from 1962-1992.

impractical to experiment with all possibilities. That global windows are unlikely to  

be of much use can be seen from the correlation functions of the data shown in Figure 

(VIII.4). The first autocorrelation is 0.127 and most of the other autocorrelations 

are close to zero; the autocorrelations before and after the decomposition are thus 

virtually the same as shown in Figure (VIII.5).

Significant improvement occurs with use of a wider variety of window sizes. Since 

inclusion of all lags up to 1200 lags would be excessive we subsample after the first 

fifteen lags and include only every fifteenth additional lag. Consideration of 12 lev­

els of window functions with some subsampling at each layer results in a total of 

approximately 974,000 potential model components. In this case the percentage of 

sample variance explained by the first model component is nearly four times as great 

as from the largest global component but the dependence is still quite weak. In fact, 

with 10 included lags ten model components altogether pick up only 14.1% of the 

sample variance in the data, which is substantially better than the case with only 

global model components but is still somewhat weak. One striking result is that none



www.manaraa.com

189

3010 200

Figure VIII.5: Correlations of Standard and Poor’s 500 daily returns 
(CRSP) from 1962-1992 compared with correlations from 
residuals after subtracting off first ten projections against 
global functions.

of the selected model components contains a global window function which suggests 

the estim ates in Equations (V III .l), (VIII.2) and (VIII.3) are spurious as indeed is 

suggested by economic theory. The selected components are shown in Table (V III.4). 

We note that many of the most strong effects are concentrated around the tim e of the 

1987 stock market and most of the detected relations are on very short tim e scales.

W ith flat windows with sm ooth Gaussian edges, we see that estim ates of lag re­

lationships focus on the 1987 stock market crash and otherwise dependence in the 

data is quite weak but not negligible at some lags. The lag one and lag two coeffi­

cients as a function of tim e are shown in Figures (V III.8) and (VIII.9) respectively. 

In addition, even after subtracting off ten projections the data appears not yet to  

be statistically homogeneous. In Ch. VI, we have developed a stopping rule based 

on the cum ulative sum of orthogonal wavelet coefficients; we call this test the cu­

m ulative waveletgram test. We show a cum ulative waveletgram test for the data in 

Figure (V III.10). This test suggests that there may exist other m odel components
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Iteration Lag Selected Begin End Coefficient Estimate

1 1 6344 6359 0.1602 3.88981

2 1 505 4342 0.1187 0.248673

3 6 6334 6364 0.1144 0.637228

4 1 6342 6357 -0.0770 -3.42743

5 2 6331 6361 -0.0882 -0.430576

6 3 6363 6423 -0.0606 -0.327588

7 5 3039 3069 -0.0528 -0.529741

8 13 6302 6422 -0.0446 -0.152358

9 3 5031 5091 0.0437 0.416004

10 1 6350 6365 -0.0423 -0.178243

Table~VIiI,4: Selected model components with constant windows for 
the Standard and Poor’s 500 index 1962-1992.

i— ■— '— '■ v  — ■— 1— r

O 2000 4000 6000 6000

Figure VIII.6: Standard and Poor’s 500 daily returns (CRSP) from 
1962-1992 after subtracting off first ten projections 
against model functions with flat windows.
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Figure VIII.7: A realization of Gaussian white noise of length 7675. By 
eye, the residual after subtracting off the first ten pro­
jections against model functions appears to have much 
different stochastic properties.

not included in the analysis which provide a more parsimonious description of the 

data.

U.S. GNP Data

We next analyze the Citibase G N P Q  output series based on constant 1987 dollars. 

The quarterly data runs from 1947 : 1 to 1992 : 4. The raw data are shown in Figure 

(V III.l 1) and the log differeneced data are shown in Figure (VIII. 12). In the analysis 

we shall use the log differenced data after subtracting out the mean.

W ith constant filters including up to 17 lags and 9 levels of constant filters, the 

program creates 1437 potential model components. From these model components, a 

global model component with lag 1 and coefficient picks up about 15% of the sample 

variance in the data; using a cumulative waveletgram stopping rule, we thus find 

that GNP is likely to be a stationary process after differencing, though there are 

some moderate signs of excess kurtosis (1.35). The cumulative waveletgram and 5%



www.manaraa.com

192

1

0 5

0

0 0000

Figure VIII.8: Estimates of /3i for the CRSP daily data based on model 
components which include flat windows with smoothed 
Gaussian edges.
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Figure VIII.9: Estimates of /32 for the CRSP daily data based on use of 
flat windows with smoothed Gaussian edges.
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Figure VIII. 10: Cumulative waveletgram for residual after subtracting off 
10 projections on stock market data and the associated 
5% confidence intervals. The test easily rejects random­
ness at a 5% level, indicating that even after accounting 
for ten model components, there is still additional infor­
mation in the data.

4000

1090

Figure V III.ll: Real GNP series 1947-1992 from CITIBASE G N P Q  se­
ries. Vertical axis is Real GNP in billions of dollars.
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Figure V III.12: Log differenced GNP data based on CITIBASE G N P Q  
series.

confidence intervals are shown in Figure (VIII. 15). In addition, we note that when 

flat windows with smooth Gaussian edges are introduced, the method continues to 

pick constant filters, suggesting stationarity.

Somewhat less clear results are obtained through use of the more general adaptive 

waveletgram test which is discussed in detail in [149]. The adaptive waveletgram uti­

lizes the best orthonormal basis decomposition of Coifman, Meyer and Wickerhauser 

[47] reviewed in Ch. VII to search for a large variety of deviations from randomness. 

The adaptive waveletgram test also fails to reject the null hypothesis of randomness 

at a 5% level but the rejection is somewhat less unambiguous. The adaptive wavelet­

gram is shown in Figure (VIII. 16). The probability that white noise would go out of 

the interval spanned by the position ordered path in the adaptive waveletgram com­

putationally is about 15% so there may be some additional uncaptured nonstationary 

components in the data.

The second selected model component is a lag two model component with a con­

stant window between 1963 : 4 and 1975 : 1. The coefficient on this model elem ent is
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Figure VIII. 13: Correlation function of log differenced GNP.

0.469895 whereas the coefficient on the first model element reduces to 0.367467. This 

suggests an alternative time series model for GNP:7

y(t )  =  0.367j/(t — 1) +  0,4699t/(f — 2)l[i963:4,1975:l](0

(0.066) (0.152884) (VIII.4)

which involves a single structural break.

Summary

In this section, we have applied our method to GNP data and stock market data. 

We find that GNP growth rates appear close to stationary whereas stock market 

data appears quite nonstationary and requires a large number of model components 

to describe well. That GNP growth rates appear close to stationary would appear to 

provide some empirical support for Robert Lucas’ idea [124] that all business cycles

7 The mean growth rate of G N P  was subtracted off before analysis.
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Figure VIII. 14: Correlation function of residual from log differenced GNP 
after subtracting off first projection.
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Figure VIII. 15: Cumulative waveletgram of residual after subtracting 
off first projection from log differenced GNP. 5% con­
fidence bounds are shown for two summation paths. A 
Daubechies D8  wavelet was used.
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Figure VIII.16: Adaptive waveletgram of residual after subtracting off 
first projection from log differenced GNP. 5% confi­
dence bounds are shown for two summation paths. A 
Daubechies £>8 wavelet was used.

are in some sense the same and that macroeconomic tim e series are at some level

well-described by stationary stochastic processes.
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C H A P T E R  IX

IM PL IC A T IO N S A N D  E X T E N S IO N S

Since the thesis introduces a general approach to modeling and measuring non- 

stationarity in economics, it opens up a number of new research possibilities. The 

purpose of this chapter is to survey some natural questions raised as a result of the 

thesis work and some of the issues involved. One point we wish to emphasize is that 

nonstationarity may have nontrivial implications for economic theory and how eco­

nomic behavior should be modeled. After discussing this point in detail, we turn to 

econometric issues related to the dissertation.

Nonstationarity and Economic Theory

Following the work of Frisch [78] and Slutsky [188] on impulse propagation mech­

anisms, most macroeconometric research has proceeded on the grounds that variables 

follow linear constant coefficient stochastic difference equations. According to Blan­

chard and Fischer, “The integration of empirical and theoretical work on fluctuations, 

through the common use of the impulse-propagation mechanism framework and its as­

sociated tim e series implications, is certainly one of the most important achievements 

of postwar macroeconomics” ([26], p. 28). The impulse propagation mechanism is 

also a key component of so-called rational expectations econometrics and the related 

economic theory. Given the wide use of linear tim e series models in macroeconomics

198
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and finance as well as the close integration with economic theory, a natural question 

to ask is: “does nonstationarity fit into this conceptual framework”?

To answer this question, we recall that one reason we have given for studying 

time-varying parameters is that the parameters of the models may depend in some 

unknown way on some state variables a:(i) for the system. A natural extension of the 

model considered in the thesis thus is:

y (0  = E & t e f O )  v i1 ~ i )  +  6C0- C1* - 1)
J=1

As we have noted in Ch. I, the method in the thesis is a special case of Eq. (IX .1) 

where tim e is the only state variable entering the functions f3j.

At the core of the conceptual framework of macroeconomics and finance is an 

assumption of rational expectations. Agents are assumed to have a subjective proba­

bility distribution for all economic variables and these subjective probability distribu­

tions are assumed to be equal to the corresponding objective probability distribution. 

Therefore, if the true model is defined by Eq. (IX .1), agents might maximize lifetime 

utility while treating Eq. (IX .1) as exogeneous. Generalized method of moments es­

tim ation methods [97] could then be used to test overidentifying restrictions implied 

by the equilibrium Euler equations of motion.

One reason we may find nonstationarities in economic data is that we have not 

included enough state variables in the analysis or have otherwise excluded information 

known to agents in the economy. Agents then would form a prior as to the true form 

of Eq. (IX, 1) and make decisions accordingly. To quote Robert Lucas [124] , “At a 

purely formal level, we know that a rational agent must formulate a subjective joint 

probability distribution over all unknown probability distributions which impinge on 

his present and future market opportunities,”

An alternative perspective due to Frank Knight [116] is that agents really do not 

know perfectly the model of the economy. Parameters thus fluctuate for reasons they
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partially understand but not fully. This perspective seems more reasonable in that 

empirically agents in the economy disagree significantly in their predictions about 

future events. At a minimum, these differences in forecasts lead one to question 

whether agents use expected values in making decisions and whether agents learn as 

quickly and as efficiently as is supposed by the theory. Knight drew a distinction 

between risk and uncertainty and defined uncertainty as cases in which agents have 

no exact knowledge of the probabilities or the risks that they face.

The reason agents face uncertainty is that the environment is nonstationary and 

agents have not had time to learn the underlying objective distribution. Knight writes: 

“It is necessary to stipulate that the fluctuations must be of sufficient extent and 

irregularity that they do not cancel out or reduce to uniformity or regular periodicity 

in a time-interval short in comparison with the length of human life” [[116], p. 38]. It 

follows therefore that progress and change are essential in determining institutional 

structures:

“In an unprogressive society knowledge of the future could be perfected 

to a high degree through actual forecast and control or the effect of cer­

tainty secured through the grouping of cases and application of probability 

reasoning. Under such conditions the problem of management would be 

indefinitely simplified as activity would follow in the main an established 

routine and real decisions would rarely be required. The actual form of 

economic control, free contract, and especially private property in ma­

terial goods, is closely connected with the acute form of the problem of 

management which arises from the highly “dynamic” character of the so­

ciety we live in and the extreme degree of uncertainty associated with  

change. Before the modern industrial era began, as we know, the eco­

nomic life of Europe was unprogressive and its organization of control was 

collectivistic...”[[116], p. 370].
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Thus, it would seem that the rationale for competitive economic systems is at odds 

with the basic assumptions of rational expectations economics and the Frisch-Slutsky 

propagation mechanism.

In regard to Knightian uncertainty, Lucas has dispensed with it by simply saying, 

“In cases of uncertainty, economic reasoning will be of no value” [124]. Implicit in 

Lucas’ claim is that probabilities commute and that quantification of uncertainty is 

impossible. One reason that Knight found uncertainty interesting is: “If conditions 

are subject to unpredictable fluctuations, ignorance of the future will result in the 

same way and inaccuracies in the competitive adjustment and profits will be the 

inevitable consequence” [[116], p. 38]. If one wants to establish an approach to  

macroeconomics based on the theory of com petitive general equilibrium, it would be 

convenient if one could dismiss a major economic factor which leads the theory to  

break down in practice as being of no economic interest or meaning.

Nonstationarity introduces the modeling question of how to model situations in 

which information diffuses and learning occurs at a slower rate than the rate at which 

economic decisions are made. W hile such situations are opposite to those assumed 

by rational expectations economics, researchers in macroeconomics and finance are 

increasingly turning to models of learning and heterogeneous information as a means 

of understanding empirical phenomena.1 At stake are a wide range of theoretical 

results including results on optimal monetary policy, optimal investment policy, op­

timal capital accumulation in a stochastic Ramsey or Real Business Cycle model, 

precautionary savings, natural resource management and the Modigliani-Miller The­

orem [140] on the invariance of the value of the firm to its capital structure as well 

as the pre-Ricardian equivalence theorem [12].

1 For instance, a recent book o f Sargent surveys recent work on bounded rationality and learning 
in econom ic theory [183], A growing literature focuses on heterogeneous inform ation and learning 
in financial markets (c.f., [23])
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We now review some new models of invidual and aggregate behavior in an en­

vironment of nonstationarity and raise some questions for future research as to how 

nonstationarity enters these models.

Models of Individual Behavior

We consider the autoregressive model:

OO
! f ( 0  =  E A ' ( ? M i _ j )  +  e ( 0  ( I X -2 )

j =1

where q G Rd are a set of parameters which determine the autoregressive coefficients 

(3j. The standard approach assumes that agents in the economy know the true (pop­

ulation) value of g, go. If agents believe the model to be uncertain, they might, for 

instance, also take into account utility for values of q which they believe might occur.

To illustrate some of the ideas, consider Fig. (IX .l). We assume that the under­

lying model is characterized by two parameters, and /?2 (which may for instance 

be the autoregressive parameters which enter Eq. (IX .2) for particular values of g). 

Agents might have a subjective belief that the point in the center of Fig. (IX .l)  

represents the parameter values of the true model. However, because there is a non- 

stationary environment, agents believe they also may have picked the wrong model 

and hence wish to behave in a way that insures high utility for all the parameter val­

ues in the shaded box in Fig. (IX .l). For instance, agents might choose to maximize 

the minimum level of utility. They might instead want to insure a certain minimum  

level of utility when certain model errors occur and treat this minimum level as a 

constraint.

While one can analyze problems of robustness and parameter uncertainty, it seems 

that, if agents do not know the model, it is more appropriate for them to be unsure 

about the overall impulse response than specific parameter values which may have no 

inherent economic meaning and which, in addition, may have highly nonlinear effects
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Figure IX.l: Parameter uncertainty.

on the response. An approach to model uncertainty focusing on impulse responses 

also seems closer conceptually to the ideas behind use of the Frisch-Slutsky impulse 

propagation mechanism.

In Figure IX we show the impulse response function of a nominal model to a shock 

(center line). In the standard approach we would assign probability distributions to 

the deviations of the observed reponse from the true model (the center line) and 

optimize by considering a weighted average of the objective function under different 

possible paths. W ith Knightian Uncertainty we do not know the probability distri­

bution of disturbances so that instead we consider a ball of models which He within 

the top line and the bottom  line in Figure (IX). We then optimize against the worst 

possible model in that ball.

When the probability distribution of disturbances is known, it is possible to write 

down an explicit evolutionary equation for state variables such as:

dx — a (x , t)dt  +  a  { x t t ) d W ( I X . 3 )
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Figure IX.2: A ball around the true model.

In comparison with this parametric model, with Knightian uncertainty all that is

known is that:

dx =  K{X) t )x  +  D x +  R  (IX .4)

where K ( x , t ) includes the effect of control and D  and R  are disturbances which can

lie in balls:

||Zhc|J <  d (IX .5)

for multiplicative noise (d  is fixed) and:

\ \ R \ \ < d !  (IX .6)

for additive noise (d' is fixed). That D  and R  lie in some function space ball may 

mean they have a dynamic structure different from that associated with the nominal 

model Eq. (IX.3). Since D  is characterized by a function space rather than a finite 

number of parameters, Eq. (IX.4) involves a nonparametric treatment of uncertainty. 

To optimize, agents might weight different aspects of additive and multiplicative noise
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(such as frequency characteristics) and solve a problem of determining the best utility 

obtainable in the worst case scenario.

Optimization problems of this type fall under the rubric of a new type of control 

theory called H “  control2, which because of its emphasis on impulse responses, has 

natural connections with both linear tim e series models and the impulse propagation 

mechanism. Basic references on H°° control and recent results in robust control 

theory include [63] [212] [204] [11] [65] [16] [201] (see [143], Pt. I, Sec. I ll  for reviews of 

syntheses of adaptive and robust control); in joint work with Hong Yang [154], we have 

applied H°° control to the problem of optimal portfolio choice. One important point 

to note is that minimax control problems of this type result in nonlinear calculations 

which differ considerably from the linear projections used in the standard approach 

of setting prices equal to risk-adjusted expected values and in theories such as the 

Capital Asset Pricing Model (CAPM ) [187] [120].

Since Eq. (IX .3) and Eq. (IX .4) are so different in nature, there are perhaps 

benefits from an intermediate semi parametric approach to uncertainty. Finally, we 

note that more conventional approaches to uncertainty, which consider parameter 

uncertainties, may be of interest in characterizing the factors which influence how 

economic agents respond in a nonstationary environment and how predictions differ 

from the standard theory which makes an implicit stationarity assumption.

Models of Aggregate Behavior

We recall the rational expectations model of Lucas [125] which considers a world in 

which agents need to separate local and global information. In such a setting, firms 

observe global variables such as price and aggregate quantities lagged one period 

but there are also certain local effects. These local effects represent heterogeneous

2 HDOis a  Hardy space norm. Hardy spaces represent causal functions like im pulse responses.
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information,  which we have argued is an important aspect of nonstationary economic 

systems in which agents make decisions at a much faster rate than they learn the 

details of the model. In this section, we shall discuss how such local effects lead to a 

“field theoretic” approach to aggregate modeling analogous to that used in modeling 

multi-body systems in physics.

In this section, we consider a simple model in which firms also observe the quantity 

decisions of firms similar to them. For instance, in the auto industry, profits will 

depend on output in a similar industry such as the tire industry and hence there are 

particularly strong incentives for executives in the auto industry to collect accurate 

information on outputs in the tire industry and vice versa.

We consider a model where firms are located on a lattice and profits depend on 

the outputs of nearby firms as well as global variables such as price. We consider a 

lattice £, and define the set of neighbors of a firm located at lattice site i as N(i) .  

A two dimensional lattice is shown in Fig. IX.3. An important economic question is 

how the answers depend on the type and dimension of the lattice; in particular, it 

is necessary for there to be some range of types of lattices which produce the same 

qualitative answers for there to be useful theoretical predictions obtained from models 

of this type. Whether this will be the case depends of type of profit function. Clearly, 

when there are no interactions and all firms are independent, the type of lattice is 

irrelevant. Since a rough scale invariance appears to be observed in economic activity  

(c.f. Granger [82] or Barsky and Miron [14]) it may be that the properties of economic 

equilibrium can be analyzed by looking at the behavior of a relatively small number 

of economic agents. If this is the case, each firm’s profit function will depend only 

on that of several other firms or neighbors. Aggregate behavior can still be quite 

correlated and complicated if all firms are linked to different firms.

We might define the profit function for instance as:
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Figure IX.3: A square lattice. The black circle is the location of a 
firm and the white circles are the location of some of its 
nearest neighbors.

n; =  i y *  -  ( ix .7 )
*  j g J V ( i )

where IT' is expected profits of firm i, P? is firm i ’s expectation of the market price, <j>i 

is the output of firm i and Xi,j are interaction parameters which capture the strength 

of local relationships between the output of firm j  and the profits of firm i. The 

quartic term is included to approximate technological nonconvexities arising from 

lump-sum costs.

If the are all positive and we fix prices or at least price expectations mo­

mentarily, a positive shock to a nearby firm’s production process will lead to higher 

output and hence a positive effect on profits and output. In such a setup, the behav­

ior of firms will be positively correlated. In the opposite case where Ai j  are negative 

and price expectations or prices are fixed, we expect the behavior of firms to be 

negatively correlated. In [153] [152] we have developed a field theoretic approach to 

statistical macroeconomics and suggested broadly that many lattice and continuum  

models developed for analysis of interacting particle systems in quantum field theory 

are relevant for a statistical treatment of economic models with many agents. This 

models provide potential mechanisms to improve the approximation provided by rep­
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resentative agent models, which replace the value of an idiosyncratic shock with an 

economy-wide average.

The conceptual problem with representative agent models in economies such as we 

consider, where fluctuations are large and involve simultaneously many of the factors 

determining equilibrium, is that the approximation of a representative agent is least 

satisfactory. Out of equilibrium, agents need only look locally to determine how to 

adjust prices, but near equilibrium price adjustment relies on a delicate accounting of 

the preferences and endowments of all agents. Therefore, near equilibrium, behavior 

is necessarily more correlated and may not be asymptotically independent as the 

representative agent model assumes.3 Another facet of “field theoretic” models is that 

there is a sense, discussed in (152], in which the choice of technology is endogenized.

Models of interacting particle systems in economics have also been developed by 

Durlauf [66] and Follmer [74], The case where Xij  are positive are analogous to 

ferromagnetic field theories and the case where AtiJ- are negative correspond to anti­

ferromagnetic field theories. In economic models, the roughly corresponding terms 

of strategic complements  and strategic substitutes have been developed in [81] and 

developed further in terms of their macroeconomic implications by Russel Cooper 

and Andrew John [49] .4 The difference between the approach in the strategic com­

plem ents/substitutes literature and in [153] is that such approaches do not generally 

consider the local nature of interactions and instead focus on a dependence on average 

behavior.5

3 A statistical m odel is required to m ake such a determ ination. The theoretical distribution  
function o f output derived in [153] is p (0 ) a  e - ^ 1, where A is the cost o f inform ation and tt is 
aggregate profits,

4 Exam ples o f macroeconom ic m odels w ith strategic com plem entarities and thus Keynesian mul­
tiplier features are: [59] [101] [103] and [89], Models with strategic com pIcm cnts/substitutcB arc of  
course ubiquitous in industrial organization.

B One reason for the difference in focus is that the empirical evidence for aggregate externalities 
is weak; for instance, a careful study by Basu and Fernald finds negligible evidence o f aggregate 
production externalities in U.S. industry. In [150], we show that in som e sense aggregate produc­
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Some technical references on field theory are: [213] [159] [119] [108]. The form 

of observed spectra in economics [82] suggests a rough scale invariance of economic 

relations. This has also been confirmed in [14]. In physics, integrals such as we would 

need to compute to determine theoretical spectra are computed approximately using 

renormalization group transformations [51] [209], which provide a general framework 

for describing complex dynamical systems in terms of aggregative equations.6 Such 

scaling transformation theory involves considering equilibria on infinitesimally larger 

markets and iterating until markets become infinitely large. The economic analog of 

such analysis would seem to be potentially a useful venue for future research.

To recap, we believe nonstationarity may have important implications for how 

economists construct models. Thus, an improved understanding of the importance 

(or lack thereof) of nonstationarity may help determine in which directions future 

theoretical research in macroeconomics will proceed.

tion externalities are inconsistent with the existence o f equilibrium with free entry whereas this is 
definitely not the case with local production externalities which seem  also to be more econom ically  
plausible.

6 A renorm alization group transformation is form ally a  renormalized sum  o f random variables. 
Consider a sequence o f  random variables {-XV}£L0. For som e n £  Z+ and q >  0, we define:

( i + i h - i
( * n * ) i  =  -  £  X j .  (IX .8)

j = i n

The transform ation Rn  is a  renorm alization group transform ation. A  fixed point X  o f the  
renorm alization group transform occurs when R n X ~ X  bo  that the renormalized data  has the sam e  
distribution as the original random variables. A standard exam ple where a “fixed point” is obtained  
is for the classical central lim it theorem (q =  | ) .  Another exam ple is for “stable” laws w ith scale 
parameter a  6  (0 ,2 )  for which q =  “  ([102], Ch. 1).

T he basic idea is that, ju st as the central lim it theorem suggests that broad classes o f ran­
dom  variables correspond to the sam e averaged statistical behavior, an econom ic application o f the 
renorm alization group transform m ay suggest that broad classes o f m icroeconom ics correspond to 
the sam e macroeconom ics.
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Econometric Issues

The thesis suggests a number of new approaches to models with time-varying prop­

erties in econometrics. Among the interesting econometric issues suggested by the 

thesis are: effectiveness of different estimators for nonstationary tim e series, measure­

ment of nonstationarity, definition of a nonstationary spectrum and broad econom et­

ric issues related to the use of “greedy”7 estimation procedures which try to consider 

many potential models at one tim e (instead of just one and hence are “greedy”). 

Furthermore, there are issues relating to how to extend the methods proposed here 

to other settings such as multivariate models and models with integrated variables. 

In this section, we review some of these issues.

Alternative Approaches to Linear Time-Varying Models

Commonly-used models of time-variation such as ARCH models, hidden Markov 

models and random coefficient models rely on an assumption on conditional time- 

variation so that model characteristics change in response to schanges in underlying 

state variables or previous values of disturbances. Empirically, it is unclear whether 

an assumption of no unconditional time-variation is reasonable. Pagan and Schwert 

[157] [156] have found in split sample tests that unconditional variances of financial 

data appear to be time-dependent. Loretan and Phillips have found that this result 

does not change if thick-tails in financial data are accounted for properly in performing 

split sample tests [121].

It is useful to consider various simple exploratory data analysis methods for lin­

ear time-varying models. In Appendix L, we have suggested kernel estimators (see 

Eq. (L.4)) as one possibility for exploratory data analysis. Another possibility is to 

construct “spline” estim ates by solving variational problems such as:

7 T he word “greedy" is often used to describe estim ation procedures like Projection Pursuit [106].
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inf
m

£  (»(*) -  mv(t  -  i))a + w 2 £  W  + 1) -  2/3(0 + W ~ i))a
Lt=a f=2

(IX.9)

The variable A controls the degree of smoothness of the curve /3(i) representing 

the first autocorrelation as a function of time. We note that A can be interpreted as a 

Lagrange multiplier on a constraint on the mean curvature of /3(t ). The second differ­

ence of fi(t)  in the variational problem is used to approximate the second derivative 

of (3(t).

Both kernel and spline estim ates are used for nonparametric estimation of non­

linear time-invariant relationships. For a review of spline smoothing procedures in 

nonparametric regression, see [105] [72] while for computational and technical details 

see [57]. The properties of spline and kernel estimators have not been closely studied  

in a nonstationary context. Research issues thus involve development of a comprehen­

sive theory and detailed comparison with other methods such as the adaptive method  

suggested in the thesis.

State-dependent parameters

Another interesting research topic is application of the methodology in the thesis 

to state-dependent parameter modeling problems:

y (0  =  £ & ( ® ( 0 )  ~ j )  +  «(*)• (IX.10)
j=i

where x( t )  are state variables which incluence @j. In this case, the window functions 

for the model components depend on a:(t) instead of t  as in the thesis. Research issues 

involve development of a comprehensive theory and detailed comparison with other 

methods such as the nonlinear state space models of parameter variation of Young 

[210], Cooley and Prescott [48], Priestley [168], Hamilton [91] and others.
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One particular possibility when there are many state variables z ft)  is to consider 

an index pursuit  model  where we seek to approximate the regression function in Eq. 

(IX.10) by:

y(0 = E E cj‘ (7**(0) -  i)  + <*)■ (IX.11)
3 = 1  J t = l

where 7 *7 * =  1. Here, the cjk are “window functions” which may either be (depending 

on applications): ( 1 ) from a fixed class, (2 ) parameterized by a finite dimensional set 

of parameters, (3) arbitrary functions. At each stage of the procedure, we would find 

a best Cjk for each choice of the vector 7 * on the unit sphere (defined by the condition 

TfcTfc =  1 )■ We then choose the value of 7 * and the function Cjjt which together best 

explain the data.

Multivariate Analysis

One interesting research question is how to expand the analysis above to handle 

the case of multivariate tim e series. The corresponding problem from the theory of 

stationary tim e series is to consider the vector model:

Sf(0 =  J) +  ei(0 -  (IX .12)
j=0

where the dimension of y  is K  x 1, B j  is K  x K  and e(i) is an independent random 

variable with a K  x  K  covariance matrix S.

The appropriate version of Equation (IX. 12) in terms of a nonstationary model

is:

y(0 = l>,(<M i-i) + ei(0- (ix.13)
j=0

In a manner analogous to the univariate case, we can consider rewriting Eq, 

(IX.13) as:
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OO
s ( i )  =  E Cffcfcfc +  e i ( 0  (IX-14)

fc=o

where Cjt is a coefficient matrix, hk is a vector-valued model component, and £i(i) is 

a noise term. We can consider adding a vector-valued model component a stepwise 

fashion by adding at each iteration the model component which adds the most ex­

planatory power. Some interesting research questions on this particular topic include:

•  W hat computational and memory requirements are required for the multivariate 

case?

•  How do the statistical properties of the multivariate case compare with the 

univariate one?

Time-Varying Spectral Estimation

In the thesis, we have suggested a generalization of the usual concept of a spectrum  

to handle tim e variation. Our definition of the spectrum is:

5((,w) = SC?a,((,u.) (IX.15)
i

where Cei(t ,uj) is the Cohen’s class distribution of the appropriate eigenvector (eigen­

function) of the covariance matrix (operator) for the tim e series and Gf  is the corre­

sponding eigenvalue.

Some research issues include:

•  Definition of cross-spectra in a manner analogous to the way we have defined a 

time-varying spectrum. What special properties do our cross-spectral estim ates 

have?
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•  How does the method perform when the tim e series are stationary but sample 

size is small? It is known [174] that the exact expressions for eigenvectors of 

the covariance matrices of some simple autoregressive models result in optimal 

transforms which are discrete sine and cosine transforms in finite samples rather 

than the discrete Fourier transform. How does this affect spectral estimates?

•  What issues are important in the choice of Cohen’s class kernel for smoothing 

purposes? How do these issues differ, if at all, from the choice of window in 

smoothing the periodogram?

Moving Average Models

We have developed the idea of estimation of autoregressive models in the thesis. 

It would be interesting to extend the results here to the more general case of mixed 

autoregressive-moving average models. Such an extension would seem to introduce 

tremendous technical problems for moving average model components would change 

each time a new regressor was added to a model because the residual changes; becuase 

of the data dependency, it is unclear under which circumstances the proposed method 

would converge to the correct model. Such research seems quite important as the 

same issues appear in dealing with bilinear time series models [170] [175], A bilinear 

BL(p,  q, r, s)  model is:

y(0 = J2 ajy (* -  3) + J2 PA1 -i)  + EE n* y(l -  i) -  k)■ (ix.is)
i - l  3 = 1  J = 1  f c = l

Even more general models can be considered which represent higher order approx­

imations to a nonlinear time series model; some models of time-varying conditional 

variances fit into such a framework [30] [70] [29] [145]. Thus, estim ation of such mod­

els within the context of methods such as developed in the thesis would seem to be 

interesting topics for future research.
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Measurement of Nonstationarity

An important issue is measurement of how much economic parameters vary over 

tim e. Given time-varying spectral or cross-spectral estim ates, we suggest a possible 

measure T:

T  =  — J  w(m) In K{t^u})dt<k/j (IX .17)

where:

*<*■">- / S &  ( i x - i s )

and w  is a weight function. The measure T  is interesting because it has an entropic 

interpretation. When there is no information in tim e variation of spectra, T  will be 

zero and otherwise it will be positive.

Some other research issues include:

•  What are the statistical properties of the measure T?

•  How much do macroeconomic and financial time series vary over tim e according 

to the measure T1

•  How does the choice of weight function w  affect the results? Is there an optimal 

choice of weight function w l

•  It may be that direct measurement of nonstationarity from the estimated co- 

variance matrix makes more sense than doing so after the intermediate step 

of constructing time-varying spectral estim ates. What are some other possible 

measures of nonstationarity in a time series based on estimates of the covariance 

matrix? How do these measures compare with the measure T  we have defined 

above?
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•  How do other methods of measuring nonstationarity (which may not use the 

estimation procedure in the thesis) compare? Indeed, what are appropriate 

m ethods to use?

Recursive Kalman Filtering

One research topic is to investigate possible uses of recursive Kalman filtering to  

compute estim ates of the linear nonstationary autoregressive model. As data arrives, 

the first step is to revise estim ates based on the new data. The next step is to validate 

the model to see if any model components can be dropped from the model. The final 

step is to revise the model to see if additional model components should be added. 

Such an extension of the basic Kalman filter would be analogous to the use of the 

“extended” Kalman filter to estim ate time-varying parameter and other nonlinear 

models.

Trends and Cointegration

To analyze time series with trends and unit roots, it has been found useful to 

use frequency domain methods via Hannan efficient estimators [92] [164] [165]. One 

merit cited for the frequency domain approach is that avoids the need to specify 

explicitly the dynamic structure of the errors. Another related advantage is that 

in many useful circumstance test statistics do not depend on nuisance parameters. 

In addition, cointegrating relationships are naturally defined at very low frequencies 

so decomposition in a Fourier basis enables the researcher to separate easily what is 

important from what is not [93] [69]. Although Hannan estimators are associated with 

spectral analysis, there is no particular reason why one cannot use other orthonormal 

basis functions such as wavelets (see Ch. VI for an introduction to wavelets) instead 

of Fourier basis functions. For instance, if wavelets are approximate eigenvectors of
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the covariance matrix of the tim e series then this seems to imply that Hannan-type 

spectral estimators with wavelet cofficients rather than Fourier coefficients may he 

promising in comparison with estimators for cointegrating regressions such as those 

developed by Phillips [164] as well as by Phillips and Choi [165].

To illustrate this point, we consider the simplest possible model:

y( t )  =  a y ( t  -  1) 4- e(t) (IX.19)

where e(f) has a stationary error structure. The Hannan efficient estimator of a  is 

([165], p. 266-7):

-  _  T  ^ 3 = 1  A t - l w t ^ j O A u t ^ j )  / T V  f j p , ' ,

a ”  1 f  { \  t  ( W l  f l A. ZUJ
T  £ j = l  f y t - l V t - l  ( ^ j ) / u u ( W j )

where is the estim ated cross spectrum between u and v.  When a  =  1, the 

estimator is well-defined and consistent [165].

The reason this estimator is efficient is that the Fourier transform diagonalizes the 

covariance matrix of a stationary process so that the appropriate weights from the 

matrix inverse of the covariance matrix in the least squares estim ate can be added 

as in Eq. (IX .20). Consider a scenario in which we compute different transforms of 

Vt-iVt which might include the Fourier transform as a special case; we may choose to 

weight estimates by the inverse of some estimated residual from an initial regression. 

We would then construct regression estimates by recursively subtracting off the best 

transform components. Such an approach might be an effective way to handle esti­

mation of unit root and cointegration processes while allowing for time-variation of 

coeffcients.

It also seems worthwhile to investigate application of the methods of the thesis to 

equations of the form:
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y(0 = c (f) ®(0 + <0 (ix.21)

where c(^ ) is a function to be estim ated and y( t )  and x(t) are integrated processes.

Other Research Issues

In addition to the range of future research topics discussed above, we also list some 

other potential topics for future research in time series macroeconomics and finance 

suggested by this dissertation:

•  Comparison of full nonlinear regression with the approach in the thesis.

•  Analysis of traditional model selection criteria when the choice of the next model 

component to include is adaptive rather than fixed as in traditional approaches.

•  Analysis of optimal choice of weighting functions and families of windows.

•  Optimal stopping rules based on Lagrange multiplier tests.

•  Robust estimation of models (in the sense of minimizing absolute deviations or 

the L 1 norm) and examination of statistical properties.

•  Consideration of Bayesian estimation problems by incorporating prior beliefs 

into choices on weight functions during selection of model components.

In this chapter, we have reviewed a wide variety of topics for future research 

suggested by this dissertation. While we have focused on theoretical questions here, 

the motivation for our work was the special properties of empirical macroeconomic 

and financial tim e series so that it is our hope that the thesis will raise as many new 

empirical questions as it does theoretical ones.
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C O N C L U SIO N

In the thesis, we examine a new approach to the analysis of certain forms of non­

stationarity in macroeconomic and financial time series. We address the question 

of estimation of linear autoregressive models with t ime-varying parameters. Unlike 

the literature on random coefficient models in econometrics, the approach assumes 

that the functional forms of the true autoregressive parameters are not known. In 

our approach, the different possible types of time-varying coefficients are parameter­

ized. The spirit of the idea is in some sense a combination of the ideas of Projection 

Pursuit Regression in statistics with the idea of Matching Pursuit representation of 

functions in terms of elementary waveforms which has been developed recently in the 

pathbreaking work of Mallat and Zhang [131]. Since the method here involves apply­

ing ideas from “pursuit” type algorithms to autoregressive processes, we have named 

the method Autoregressive Pursuit.  The framework shares many of the advantages 

of nonparametric analysis and reduces to the standard stationary linear tim e series 

methodology as a special case.

The thesis contains a mixture of simulations, theoretical analysis and applications. 

We develop different estimators and examine their properties on some simulated sta­

tionary and nonstationary processes. We examine some theoretical properties of 

estim ates and develop a stopping rule based on the use of wavelet coefficients which

219
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we believe to be of independent interest in testing for randomness in nonstationary 

time series. We also show how the estimation method developed in the thesis can 

be of use in nonstationary spectral estimation. We develop some applications to 

macroeconomic and financial data.

While our motivation in developing the method in the thesis was the special prop­

erties of economic data, we believe our approach may also have wider appplications 

in time series analysis. In particular, we think it might be applicable to  the numerical 

estimation of dilation relationships such as occur in the analysis of texture and fractal 

growth patterns, a problem which has so far proved difficult [9] [8] [107]. It is also 

may be of some use in the analysis and linear prediction of speech patterns which 

have been the primary application of hidden Markov models.

In addition to the practical advantages of the approach in the thesis, we also 

think the approach taken is also interesting from the point of testing hypotheses and 

models as it allows one to parameterize at once a whole range of possible models and 

to examine which model or combination of models best represents the data.
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A P P E N D I X  A

Function Spaces

In this appendix, we review the function spaces used in the theoretical parts of 

the thesis. Let R and C denote the set of real and complex numbers and let Z denote

the set of integers. We define L2(t') to be the Hilbert space of complex functions

/  : R h  C such that /  is measurable and:

f  \ f (x ) \2dv(x)  <  oo (A .l)
J —OO

In the case where u is a Lebesgue measure, we refer to L2(y) as L2. The space L2(^) 

is a complex Hilbert space with an inner product <  f , g  >  defined by:

<  f>9 > =  I  f {x)g*{x)du{x)  (A .2)
J — DO

and a norm ||/ | | defined by:

/ OO

\ f (x) \2dv(x)  =  ll/ll2. (A .3)
»oo

In the special case where the measure i /[dx) integrates to one, we use the simpli­

fying notations:

E ( f 2) =  ll/H2 (A .4)

E ( f g )  = <  f , g  >  (A .5)
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Hilbert spaces are particularly useful in the theory of stationary tim e series anal­

ysis because it is known that any stationary time series X t can be represented as:

X t =  I** eiutdZ(u)  (A.6)
Jo

where dZ(u>) is an orthogonal increment process such that:

E( dZ( w) dZ(u j ’) )  =  dFx {tj)6{u> -  w') (A .7)

where Fx  is the cumulative spectral distribution of the data X . 1 Therefore, when we 

have a stationary random variable X t £  L2(F),  we can define the L 2 norm as:

E(X!)  =  I W  =  F  dF^u) (A .8)
Jo

and the inner product of Xt  and X t - i  as:

E { X tX t - x) = <  X u X t^  > =  j 2" e^dFx{w) (A .9)
Jo

A comprehensive review of the use of Hilbert space methods in statistical theory is in 

[189]. Another reference on Hilbert space methods as used specifically in tim e series 

is ([33], Ch. II).

Since we use the theory of Lp mixingales due to Andrews [6] and McLeish [135],

it is useful to define formally Lp norms as well. A measurable function has an Lp(v)

norm of:

aOQ \  i / p
| / ( * ) W * ) )  (A .10)

for 1 <  p <  oo; a measurable function is in Lp if:

1 See [162] [169] for detailed discussions of the spectral analysis of stationary time series.
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/ o o

| / ( s ) |pdi/(;c) <  oo. (A .11)
-OO

For p =  oo the norm is defined as:

|L~ =  ess sup | / ( e )|. (A .12)

or the supremum over all measurable sets. When the measure v(dx)  integrates to 

one, we can substitute expected values for norms, e.g. E ( f p) — | | / | | l p -

Since in various places in the thesis, we make technical comments about the prop­

erties of sequences, we review here the proper definitions of norms for sequences. For 

instance, a sequence: /  : Z C is in l2 if:

£  If U ) \ 2 <  CA -13)
i=-oo

it then has an l2 norm of:

11/11?.= E  \ fU) \2 (A.14)
j=-oa

Likewise, a sequence: /  : Z ■—► C is in lp if

E l / ( j ) r  <  (A .15)
j=-oo

it then has an lp norm of :

i f , =  e  i / 0' ) r  ( a . i 6 )
j=-oo

A sequence which is bounded is in 1°°.
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A P P E N D I X  B

Tim e Series Background

This appendix briefly reviews some of the background in tim e series analysis 

assumed by the thesis. The standard approach to tim e series analysis relies on a 

discrete-time linear mode] with time-invariant coefficients;

OO OO
=  ( * - i )  + £  *0 t0 -1)

j =l Jt=o
where e is an independently and normally distributed noise term. Letting z  denote a 

backwards shift we can write Equation B .l as:

y{1) =  kkZke(t) (B-2)
i=i fc=o

We define the polynomials B ( z )  — 1 — and H ( z ) =  hjZ*. We then

rewrite Equation B .l as:

B ( z )y ( t )  =  H(z)e( t )  (B .3)

If B ( z ) has no zeroes on the unit circle we can rewrite Equation B.3 as:

! / «  =  =  *(*)«(<) (B .4)

Eq. (B .3) is referred to as the moving average representation of y.

The correlation function of y is defined as:
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7 (k)  =  E ( y ( t ) y ( t  -  k )) (B .5)

The spectrum of the stationary process y  is defined as the Fourier transform of 

its autocovariance function:

OO

= E i ( n )e~inu (B .6)
n = —oo

The spectrum is a convenient tool for analyzing the frequencies of fluctuations 

which are contributing to the variation in the tim e series. The spectrum is:

i M  =  (B .7)

An estim ate of the spectrum is the sm oothed square of the Fourier coefficients of 

the data. Smoothing is necessary to achieve consistency of estim ates. Some useful 

references on the material in this appendix are: [33] [126] [169] [181] [36],



www.manaraa.com

227

A P P E N D I X  C

C om putation of D iscrete W avelet Transforms

To compute wavelet transforms on a set of discretely sampled data where

ti are located on a uniform grid, we set co,y =  y ( t j )  for j  =  1 . . .  T  and implement the 

following recursions which follow from M allat’s Past Wavelet Transform algorithm  

[130]:

c3.* =  I0 -1)
n

=  X )  s*(n ”  2fc)ci-i,n- (c -2)
n

Filter coefficients for h and g in Eq. (C .l) and Eq. (C.2) are in Appendix D. We 

will outline what conditions these filter coefficients must satisfy below. In Eq. (C .l)  

and Eq. (C.2), we note that the wavelet coefficients are defined as (see Appendix A 

for the definitions of inner products):

d j , k - < y , ^ j , k >  (C.3)

and the approximation or smoothing coefficients of y, are:

where:

cj,fc —■<' y> > • (0.4)
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M * )  =  r h  ( 2  -  *) (c .5 )

^ ( t )  =  2 ~ h  (2- h  -  k) (C.6)

for a wavelet function i}r(t) and a corresponding ‘sm oothing’ function

For any J  >  0, we recall that a discrete wavelet expansion for y £ L2 is of the 

form:

0 0  J  0 0

y(t)= £  cJ,fefok(0+ S  £  (c-7)
k =  — oo j ——o o k =  — oa

To see what conditions the filters h and g  must satisfy, we can write [130]:

<f}(x) =  hn<f>(2x — n)  (C.8)
n

tft(x) =  V2 ^2 9n4 > {^  -  ” )• (C.9)
n

We take the Fourier transform:

=  rh(uj/2)^>(u;/2)

=  n * ( ^ )  ( c . io )

where:

=  ( a n )

We note that:
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(C13>
Let us define the matrices H  and G  to correspond to the coefficients in Eq. (C .l)  

and Eq. (C.2). We then have that:

ci + 1 =  H c j  (C.14)

dj+i =  GCj (C.15)

To invert the transform or reconstruct the data from the coefficients:

Cj_! =  H * c J +  G ' d j  (C.16)

Certain restrictions are placed on the choice of filter coefficients. Orthonormality 

requires:

HG* =  0 

G H *  =  0

Reconstruction requires in addition:

H * H + G * G  =  I  (C.17)

In terms of Fourier transforms we need:

lm ( w ) | 2 +  \ m ( u  +  7 r ) |2 — 1 (0 .18)



www.manaraa.com

230

|n (tu )|a +  |n(w  +  tt) |2 -  1 (C.19)

|m (u i)|2 +  |n(u> +  7 r ) | 2 =  0 (C.20)

|ra(w)|2 4- |m(o; -f tt)\2 — 0 (C.21)

with: m (0) =  1 ,771( 71-) =  0 ,n (0 ) =  0,n(7r) =  1. These conditions imply [130] [200]:

=  (C.22)

-  n ) (C.23)
k

E  9k-2m9l-2n ~  ~  n ) (C.24)
fc

E  =  0.0 (C*25)
fc

where the 5 function in this Appendix is a Kronecker delta:

f 1 if t  =  0
S(t) =  i (C.26)

 ̂ 0 otherwise
Appendix D lists some of the filter coefficients which satisfy the above conditions 

and which are necessary to efficiently compute wavelet transforms as well as wavelet 

packet transforms.

Let us consider some independent Gaussian noise y( t )  and derive some statistical 

properties of its wavelet coefficients based on the formulas we use to compute the 

wavelet transform.

First, we note that:
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E(cjik) =  E  ^  h(n -  2 fc)c,-_lifl  ̂ =  0. (C.27)

for j  >  0 since E(c0in) — E(y(n) )  =  0. This implies that:

E(djik) =  E  ^  9 (n ~  SAOci-i.n) =  0. (C.28)

so that discrete wavelet coefficients are mean zero, To simplify the presentation

(without loss of generality), we have assumed that the wavelets are real.

We note:

E (d 2'k>dlik) =  E  h(r ~  ~  2k)co,nh(l  -  2fc')c0l(]
\  r ( n /

=  a 2 ^2  ^2  h{r — 2k‘)g{n  — 2k) h(n — 2k1)
r  n

=  0 (C.29)

since:

T .  g(n — 2k) h{n — 2k!) — g{n) h{n — p) =  0 (C.30)
n n

by the filter requirements and:

E{cotncoj) =  E(y(n)y( l ) )  =  cr2S(n -  /) (C.31)

since y(n)  is white noise. Similarly:

E{dw d,,k) =  E l ' £ ' £ ' £ ' £ . M s - U ' ) 9 ( r - U ' ) g ( n - 2 k ) ' : <, „ h ( l - 2 k ‘)c!, j )
\  * r  I n  /

=  cr2 ' y  h(s — 2k')g(r — 2k')g(n — 2k)k(n  — 2k‘)
a r  n

=  0 (C.32)

and in general E(dj ik'djt>k) =  0 for j  /  j'. We also note that:
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E{di ,k'dhk) =  E  ”  2* 0 s (n  “  2A:)c0inc0ii^

=  a 2 9 (n  -  2fc) g(n  -  2k‘)
n

=  o 28 ( k - k ' )  (C.33)

since:

Y , 9 { n - 2 k ) g ( n - 2 k, ) =  8 ( k - k ' )  (C.34)
n

again by the requirements which filters must satisfy. Similarly, E^dj^dj^)  =  0 for 

k ^  k'. Thus, since the wavelet transform is linear, the computed wavelet coefficients 

of white noise are independent white noise. This must be the case as white noise 

decomposed in any orthonormal basis is w hite noise.
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A P P E N D I X  D

W avelet Filter Coefficients

This appendix contains some of the wavelet filter coefficients used in computations. 

These particular filter coefficients are derived by Daubechies [52].
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Coeff. Number Smoothing Filter h(n ) Wavelet filter g (n )

0 7.0710678H86547570e-01 7.07106781186547570e-01

1 7.07106781186547570e-01 -7.07106781186547570e-01

Table D .l: Haar wavelet filter coefficients.

Coeff. Number Smoothing Filter k(n) Wavelet filter g(n)

0 4.82962913144534160e-01 -1.29409522551260370e-01

1 8.36516303737807940e-01 -2.24143868042013390e-01

2 2.24143868042013390e-01 8.36516303737807940e-01

3 -1.29409522S51260370e-01 -4.82962913144534160e-01

Table D.2: Daubechies D4 wavelet filter coefficients.

Coeff. Number Smoothing Filter h(n) Wavelet filter g(n)

0 3.32670552950082630e-01 3.52262918857095330e-02

1 8.06891509311092550e-01 8.54412738820266580e-02

2 4.59877502118491540e-01 -1.35011020010254580e-01

3 -1.35011020010254580e-01 -4.59877502118491540e-01

4 -8.54412738820266580e-02 8.06891509311092550e-01

5 3.52262918857095330e-02 -3.32670552950082630e-01

Table D.3: Daubechies D6 wavelet filter coefficients.
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Coeff. Number Smoothing Filter h{n) Wavelet filter g(n)

0 2.30377813309000010e-01 -1.05974017850000000e-02

1 7.14846570553000050e-01 -3.28830116670000010e-02

2 6.30880767930000030e-01 3.08413818359999990e-02

3 -2.79837694169999990e-02 1.87034811718999990e-01

4 -1.87034811718999990e-01 -2.79837694169999990e-02

5 3.08413818359999990e-02 -6.30880767930000030e-01

6 3.28830116670000010e-02 7.14846570553000050e-01

7 -1.05974017850000000e-02 -2.30377813309000010e-01

Table D.4: Daubechies D8 wavelet filter coefficients.

Coeff. Number Smoothing Filter /t(n) Wavelet filter g (n )

0 1.60102397974000000e-01 3.33572528500000010e-03

1 6.03829269797000020e-01 1.25807519990000000e-02

2 7.24308528437999980e-01 -6.24149021300000020e-03

3 1.38428145901000000e-01 -7.75714938400000050e-02

4 -2.42294887066000000e-01 -3.22448695850000020e-02

5 -3,22448695850000020e-02 2.42294887066000000e-01

6 7.75714938400000050e-02 1.38428145901000000e-01

7 -6.24149021300000020e-03 -7.24308528437999980e-01

8 -1.25807519990000000e-02 6.03829269797000020e-01

9 3.33572528500000010e-03 -1.60102397974000000e-01

Table D.5: Daubechies DIO wavelet filter coefficients.
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Coeff. Number Smoothing Filter fi(n) Wavelet filter ^(n)

0 1.11540743350000000e-01 -1.07730108500000000e-03

1 4.94623890397999980e-01 -4.77725751100000020e-03

2 7.511339O8O21OOGOO0e-Ol 5.53842200999999980e-04

3 3.15250351709000010e-01 3.15820393180000010e-02

4 -2.26264693965000010e-01 2.75228655299999990e-02

5 -1.29766867567000010e-01 -9.75016055869999950e-02

6 9.75016055869999950e-02 -1 .29766867567000010e-01

7 2.75228655299999990e-02 2.26264693965000010e-01

8 -3.15820393180000010e-02 3.15250351709000010e-01

9 5.53842200999999980e-04 -7.51133908021000000e-01

10 4.77725751100000020e-03 4.94623890397999980e-01

11 -1.07730108500000000e-03 -1.11540743350000000e-01

Table D.6: Daubechies D12 wavelet filter coefficients.
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Coeff. Number Smoothing Filter h(n) Wavelet filter g(n )

0 7.78520540849999970e-02 3.53713800000000020e-04

1 3.96539319482000000e-01 1.80164070400000000e-03

2 7.29132090845999950e-01 4.29577973000000010e-04

3 4.69782287405000000e-01 -1.25509985560000000e-02

4 -1.4390G003928999990e-01 -1.65745416310000000e-02

5 -2.24036184993999990e-01 3.80299369350000010e-02

6 7.13092192669999990e-02 8.06126091510000060e-02

7 8.06126091510000060e-02 -7.13092192669999990e-02

8 -3.80299369350000010e-02 -2.24036184993999990e-01

9 -1.65745416310000000e-02 1.43906003928999990e-01

10 1.25509985560000000e-02 4.69782287405000000e-01

11 4.29577973000000010e-04 -7.29132090845999950e-01

12 -1.80164070400000000e-03 3.96539319482000000e-01

13 3.53713800000000020e-04 -7.78520540849999970e-02

Table D.7: Daubechies D14 wavelet filter coefficients.
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Coeff. Number Sm oothing Filter k(n) Wavelet filter g(n)

0 5.44158422430000010e-02 -1.17476784000000000e-04

1 3.12871590914000020e~01 -6.75449405999999950e-04

2 6.75630736296999990e-01 -3.91740372999999990e-04

3 5.85354683654000010e-01 4.87035299299999960e-03

4 -1.58291052559999990e-02 8.74609404700000050e-03

5 -2.84015542961999990e-01 -1.39810279170000000e-02

6 4.72484573999999990e-04 -4.40882539310000000e-02

7 1.28747426619999990e-01 1.73693010020000010e-02

8 -1.73693010020000010e-02 1.28747426619999990e-01

9 -4.40882539310000000e-02 -4.72484573999999990e-04

10 1.39810279170000000e-02 -2.84015542961999990e-01

11 8.74609404700000050e-03 1.58291052559999990e-02

12 -4.87035299299999960e-03 5.85354683654000010e~01

13 -3.91740372999999990e-04 -6.75630736296999990e-01

14 6.75449405999999950e-04 3.12871590914000020e-01

15 -1.17476784000000000e-04 -5.44158422430000010e-02

Table D.8: Daubechies D16 wavelet filter coefficients.
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Coeff. Number Smoothing Filter /i(n) Wavelet filter g(n)

0 2.66700579010000010e-02 -l,32642030000000010e-05

1 1.88176800078000000e-01 -9.35886700000000050e-05

2 5.27201188931999960e-01 -1.16466855000000000e-04

3 6,88459039454000000e-01 6.85856695000000030e-04

4 2.81172343661000020e-01 1.99240529500000020e-03

5 -2.49846424326999990e-01 -1.39535174700000000e-03

6 -1.95946274376999990e-01 -1.07331754830000000e-02

7 1.27369340336000000e-01 -3.60655356700000010e-03

8 9.30573646040000060e-02 3.32126740589999970e-02

9 -7.13941471659999970e-02 2.94575368219999990e-02

10 -2.94575368219999990e-02 -7.13941471659999970e-02

11 3.32126740589999970e-02 -9.30573646040000060e-02

12 3.60655356700000010e-03 1.27369340336000000e-01

13 -1.07331754830000000e-02 1.95946274376999990e-01

14 1.39535174700000000e-03 -2.49846424326999990e-01

15 1.99240529500000020e-03 -2.81172343661000020e-01

16 -6.85856695000000030e-04 6.88459039454000000e-01

17 -1.16466855000000000e-04 -5.27201188931999960e-01

18 9.35886700000000050e-05 1,88176800078000000e-01

19 -1.32642030000000010e-05 -2.66700579010000010e-02

Table D.9: Daubechies D20 wavelet filter coefficients.
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A P P E N D I X  E

S ta tis t ic a l P r o p e r tie s  o f  R o llin g  A u to r e g re ss iv e  E st im a te s

In this appendix, we review an interesting asymptotic property of estim ated co­

efficients in the case when we use a uniform set of overlapping flat windows.

T h eo rem  13 Consider a stationary autoregressive process;

y{t) -  !) + e(0 (E.l)
with:

m  <  i- (e .2 )

e ~ N ( 0 , a 2) (E.3)

and consider a local estimator:

6 ( A  £EKf*(r)y(r-l) ,E11

then as L —y oo, Pl (1) — 0b{t  — 1) is not autocorrelated at lags less than L.

P roof: As a first step, we note that as L  —► oo, the denominator of the least squares 

estimator converges to the unconditional variance of y:
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Furthermore, we note that:

( - + - L 4 - 1  t-\-L

e(r)y(r -  1) -  e(r)y(r — 1) =  e(Z +  L +  l)y ( i  +  L) -  e{t)y(t  -  1) (E.6)
r = t + l  r = t

From Eq. (E.6), we have for large L  that:

Lt 7 ^  ^  “ & ( *  +  § ) )  w e(f +  L +  +  L ) ~  £(0i/(* - x) (E*7)

The original version of this appendix worked exclusively with Eq. (E.7). However, 

Eq. (E.7) is not a valid as a limiting expression because the right hand side depends 

on L and a slightly more complicated technical argument is required.1

We first demonstrate the result for /3 — 0. Define s G [0,1] by: 3 =  Define also 

k =  ~ . Noting that by definition:

1 t+L+l 1 i+[fcT]+l

-  J2 t(rXT ~ 1) = t e(r )e(r  -  X) (E -8)
1  r - t  1  T = t

we then define:

, (<r)+([fcTj+i)
C t { s )  =  ■= e(r)e(r - 1) (E.9)

1 r=[»T]

which is approximately:

i K-+fc)T]
Ct {s ) =  =  Y i  e(r)e(r -  1) (E.10)

1 *=\>n

1 I am grateful to Prof. E.P. Howrey for pointing out this problem and for suggesting som e 
possible ways out.



www.manaraa.com

242

Since the random variable: e(r)e(r — 1) has only local dependence, the functional 

central lim it theorem [25] implies:

,— r*+k
s/ T C t {s ) ^ ljJ  d W {t )  (E* 11)

where u) is a 2 (not a)  since e is Gaussian and where W(.s) is a Wiener process.

Thus:

VT/3 ^^3 +

An infinitesemal change in s results in change in the least squares estimator which 

is proportional to the Brownian motion increment:

d W (s  +  k) -  d W {s )  (E.13)

This increment will only show correlations with another increment:

d W (r  +  k) -  dW {r )  (E.14)

in some very special cases. First, if r =  s, then the increments will be positively 

correlated. Likewise, if r  =  s  +  k, then the increments will be negatively correlated. 

Also, if r  =  5 —A: the increments will be negatively correlated. However, when r  =  s-j-k 

and r =  s — k we have violated the assumptions of the theorem because the window 

is of length L — [&T] and our claim was only that autocorrelations at nonzero lengths 

less than L  were zero.

We now proceed to show the result on a more rudimentary level when /3 =  0. 

The purpose of doing this is to show how the result works in practice with large 

but finite datasets. In addition, the Brownian motion asymptotics only apply for 

autocorrelations at large lags whereas the calculations below apply for large L but 

autocorrelations at small lags. We have from Eq. (E.7):

) T h * r
dW {t ) (E.12)
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Lt2 +  ^  +  1) -  ^  +  y ) )  58 e(* +  ^ +  !)*(* +  ^) -  e(Oe(i ~~ 0  (E.1S)

It immediately follows that the expected change in /? is zero. To compute the 

autocovariances of changes in /3, we need to compute the expectation value:

Z  =  £ ( ( e ( i  +  L-{- l )e(f  +  Z ) - e ( t ) e ( i - l ) ) x

(e(f +  L  +  m  +  1 )e(i -f m  +  L)  — e(i -f m)e[t  m  — 1))) (E.16)

We note:

Z  — Z \ -h Z 2 -4- Z^ -f- Zi\ (E.17)

where:

Z \ =  E  (e(f +  L +  l )e ( t  +  L)e(t  -f L +  m  +  l ) e ( t  +  m  +  £ ) )  (E.18)

Z2 =  —E  (e(f +  L +  1 )e(t  +  L)e{t  +  m)e(t  +  m  — 1)) (E.19)

Z3 =  —E (e( t )e ( t  — 1 )e(f +  L  -f rn +  l)e ( i 4- m  +  L )) (E.20)

Z4 — E  (e(t)e(t — l)e ( i +  m)e(t  +  m  — 1)) (E.21)

We first consider Z \. For the expectation of a product of independent Gaussian

variables to be nonzero, it is known that there must be an even number of random

variables and all random variables must be in pairs whose indices match. The first e 

cannot match with the second and can match only with the third when m =  0 which 

produces a variance term rather than a covariance. The first e can match with the
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fourth e when m  =  1, but in this case the second and third c do not have matching 

indices. Thus, Z\ is zero.

We now consider Z 2• The index of the first term cannot match with the second 

but can match with the third when L  +  1 =  m. The first term can likewise match 

with the fourth when m  =  L +  2. When m  =  L +  1 the second and fourth terms 

match so that Z2 =  cr4. However, in this case, |m] >  L  which violates the conditions 

of our theorem. W hen m  =  L +  2, the second and third terms do not match so that 

Z2 — 0. Thus, Zi — 0.

We now consider Z3 . The index of the first term cannot match the second. It 

can match with the third when m  — — L — 1, In this case, the fourth and second 

terms match. The index of the first term can match the fourth when m  =  ~ L , but 

then the indices of the second and third term do not match. Thus, Z3 =  0 unless 

m  =  — L — 1 which contradicts the assumption of the theorem (that the autocorrelation 

lag |mj <  Zr).

We next consider Z4. The indices of the first term do not match with the second 

or third terms for m  /  0, but they do match the fourth term when m  — 1; however, in 

this case the indices of the third and the second terms do not match. Hence, Z4 — 0.

Therefore, if |m| <  L, the autocorrelation of increments of /3 l(0  are asymptotically 

zero so that /?l(£) behaves asymptotically over short intervals as a Brownian motion.

We now extend the results to models with /? /  0. The assumption \{3J <  1 is 

crucial. We first describe how to extend how the Brownian motion formalism used 

for the j3 =  0 case to the case where ^  0. We define:

I K'+*)TJ
C t ( s )  =  ™ J 2  y ( r ) y { r  -  1) (E.22)

1 r=l*T]

where k is the proporiton of the data spanned by the window. Eq. (E.22) can be 

rewritten as:
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i [(•+*)n
c t {s )  =  7p t l  [^y(r “  !M r -  !) + e(*)y(4 -  !)] (E-23)

1  r =  [sT]

We note that:

1 K*+k)r]
J im fp S  »(r _  1)y(r -  1) -* r * (E.24)

T  r=[,T|

We also note that e(t)y(i — 1) has only local dependence because:

=  (E.25)
i

implies that correlations with distant e die off at an exponential rate. Therefore:

- / ? ) = * -  r +k d w ( t )  (E.26)
r t  J t

where X2 is the long-run variance of y ( t  — l)e(f)- We then have:

+  5 ) -  P)  =*• (E-27)

which is of exactly the same form as before for the case j3 — 0 so that we can use 

exactly the same asymptotic arguments for the lack of autocorrelations in changes in 

the local autoregressive estimate.

The exact calculations on the numerator are somewhat more involved than for the 

/3 ~  0 case but we go through them anyway in order to show how the result works

in detail for large L. To compute the correlation among the changes in estim ates of

/3(t) we use Eq. (E.6) to obtain the expression:

I  =  E ( Y :  F 0 k « t  +  L +  1 )e(t +  L — j )  — e(f)e(i -  1 -  j ) )  x
j,fc>0

(e(i +  L +  1 +  m)e(t  +  L +  m  — k) — e(t  +  m )e(t +  m  — 1 — &))) (E.28)

We compute the expectation value of Eq. (E.28) term by term. We have:
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I  =  h  +  Ia +  I3 +  h  (E.29)

where:

Ii =  E ( J 2  P i+ke(t +  L +  l ) x
j , k > 0

e(t +  L — j )e(i -f L  +  1 -f m )e(f -f L  -f m  — k )) (E.30)

J2 =  —E  [ ^  fl*+ke(t +  L  -f l)e (t +  m )e(f +  L — j ) e ( t  +  m  — 1 — k) | (E.31)

/ 3 =  — E  ( e(t) e(i — 1 — j ) e ( t  +  L +  1 4- m )e(f +  L +  m  — k ) ) (E.32)
i.fe> o

/4 =  E  | e(i) ^ 2  e(f — 1 — ; ) e ( i  +  m )e( i  +  m  — 1 — A:) 1 . (E.33)
\  i , k >  o /

We first consider /j . The term e(f +  L +  1) cannot have indices which match 

e(£ +  L — j )  since j  >  0. it cannot have indices matching the third term but it 

can have indices matching the fourth term if m  — k =  1. Thus, if m  > 0, the only 

possibility is when k =  m  — 1. In this case, the second and the third terms must 

match but this can only occur if j  =  —m  — 1 which can only occur if m  <  0. Thus, 

if m  >  0, It is zero. It is also zero when m  <  0 because e(t -f- L  -f 1) cannot pair up 

with any other terms.

We next consider / 3. The first two variables match when m  — L +  1. However, 

in this case |mj >  L  which contradicts the assumptions of the theorem. In the case 

where m  — L +  1, all j  — k — 1, which results in —/z2ct4 for some constant 

Similarly, the first variable can never match the third variable. The first matches the
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fourth when m  =  fc +  L +  l  in which case the second term cannot match indices with 

the third.

We next consider I3. The first term can never have identical indices with the 

second. If m  — —L — 1, the first term can have an identical index with the third 

in which case, we have terms contibuting wherever j  =  k which leads to —fi2a 4 for 

some /i(/3). The first term can match with the fourth when L +  m  — k =  Oso that 

k =  m  +  / which also violates the conditions of our theorem. In this case, the third 

term cannot match with the second. Thus, when the conditions of the theorem are 

satisfied, |m| <  L, I3 =  0.

Finally, we consider I4. The first term can never have identical indices with  

the second. It also cannot have identical indices with the third since m  /  0 by 

assumption. The first term can have identical indices with the fourth term when 

k — m  — 1. However, in this case, the second and third terms cannot have identical 

indices. Therefore, I4 — 0.

Thus, we have shown that over short intervals, estim ates of autoregressive models 

using rolling estim ation procedures result in random walk behavior. We have also 

shown that there is a strong negative correlation among increments spaced by win­

dow length. This negative correlation causes the autoregressive estim ate to maintain 

a tim e invariant variance. I

That this theorem works operationally can be shown in a figure (c.f. Fig. E. l )  

where we have constructed autoregressive estimates using a large window L =  1000 

on a random sample of size 8000. The autocorrelations of the differences are all sta­

tistically zero as expected and a regression of the estim ated on their first lag results 

in an estim ated coefficient of 0.999187 with ordinary standard errors of 0.000285181.
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0

■0,05

5000

Figure E .l: Autoregressive estimates.
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A P P E N D I X  F

P u rsu it  M e th o d s

In this appendix, we relate the approach to time series analysis in the thesis to 

Projection Pursuit  and Matching Pursuit. We also show how to use this relationship 

to define some faster computational procedures which might be useful in practice with 

large datasets. Readers interested only in the alternative computational procedures 

should skip to the section labeled “Recipe for a Simplified Algorithm”.

P r o je c tio n  P u rsu it  R eg ress io n

Suppose we want to determine the statistical relationship between a set of variables

X  €  R d and a response variable Y  £  R . Projection Pursuit [106] is a method of

estimating the conditional expectation:

f { x )  =  E ( Y \ X  =  *) (F. l )

where the dimension d  is large. Projection Pursuit estimates f ( x )  by an expansion 

in terms of one-dimensional “ridge” functions gi:

f ( x ) =  S s i C # 1 ) (F.2)
;=o

where $/?,• =  1. Projection Pursuit regression is implemented iteratively. The residual 

at any stage I  is given by:

r 1 =  y -  £ * ( # * ) ■
i=0

(F.3)
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At any stage / ,  we fit the best function gi to the residuals nonparametrically for a 

given choice of (3j and then choose the /3j which produces the estim ated function gi 

with the smallest residual sum of squares. This approach is conceptually attractive for 

exploratory analysis of high-dimensional data and thus frequently used in practice.1 

Nevertheless, as a nonparametric procedure, it is computationally intensive and re­

quires large sample sizes to use effectively. In addition, while the procedure is over 

twenty years old, little is known about its asymptotic statistical properties.2 

M a tch in g  P u rsu it  A n a ly s is

The Matching Pursuit analysis of Mallat and Zhang [131] provides a way of ex­

pressing functions in terms of elementary waveforms such as that shown in Figure 

(III.3). If we let a waveform of type i  be e;, Mallat and Zhang developed a way of 

expanding a function f ( x )  in terms of a sum of waveforms:

OO
/( x )  =  £ < 7 ,ev (x ) (P .4)

i=o

where the two functions e, and ej are not orthogonal to each other.3 Considera­

tion of nonorthonormal vectors allowed Mallat and Zhang to develop a simple way 

of representing functions in terms of nonorthonormal functions which has attractive 

properties such as translation invariance. The major weakness of orthonormal wavelet

1 For an exam ple o f how the m ethod could be used in tim e series analysis, consider Fig. 1.1.
If we wanted to estim ate (or ju st look for) a  nonlinear m ultivariate relationship between y( t  — 2), 
y{ t  — 1) and y[ t ) ,  we would need to estim ate a two-dim ensional regression surface. Since data are 
lim ited, we could not use kernel m ethods; however, since Projection Pursuit restricts attention to  
one-dim ensional projections, we could estim ate a  surface using Projection Pursuit m ethods.

3 Much more is known about the statistical properties o f the first stage estim ates or go. Index 
m odels o f the type ga are used in econom etrics for ‘average derivative’ estim ation o f regression 
relationships (c.f., [99] [100]); perhaps the m ost impressive empirical application o f such m ethods 
has been the verification o f the 'Law o f Dem and' by Hildenbrand and others over the past decade 
[104] [98].

3 Both the function / ( * )  and the waveforms are assum ed to lie in a Hilbert space.
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representations is their lack of translation invariance.4 Translation invariance of rep­

resentations is considered very important in applications such as image processing.

Mallat and Zhang [131] propose an iterative procedure to determine the expansion 

Eq. (F.4). Mallat and Zhang start with a “dictionary” composed of a large set of 

potential functions e; to include in a function expansion. At any stage / ,  Mallat and 

Zhang propose adding to the function expansion for f ( x )  the waveform which is most 

correlated with the residual. In other words, we let the residual at stage n  be y n, 

then we select the waveform to include at stage n, en, as the waveform which solves:

sup j <  y" e{ >  | (F.5)
ei£S

where S  is the “dictionary” set and each waveform e,- satisfies | |at-| | =  1, We update 

using the formula:

yn+1(x) =  y n( x ) -  <  y n, en >  en(x) (F.6)

and we start by setting y° — y.  Thus, for any I  >  0:

y J ^ C ^  +  y 1 (F .7)
n=0

where:

Cn = <  y n, en > . (F.8)

For the e;, Mallat and Zhang use Gabor functions which have attractive features 

in terms of time-frequency spectral estim ation.5

4 To address thiB problem, Mallat and Zhong (not Zhang) originally considered representing func­
tions in terms of the maxima of redundant nonorthonormal wavelet decompositions [128] [127], 
While this representation was translation invariant and found use in applications, it was proven (by 
counterexample) not to converge.

5 Among all functions, Gabor functions achieve the minimum product of a measure of “variance” 
in the time and frequency domains. Specifically, let ||p|| =  1 and define:
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Gabor functions are Gaussian functions which are modulated (multiplied by com­

plex exponentials):

e i ( x )  =  Li  e iuiX e ( F . l l )

where Li is a normalization factor.6 Despite their attractive features, Gabor functions 

are not orthonormal. Nevertheless, Mallat and Zhang were able to show that their 

expansion had many of the same properties as orthonormal series expansions (such 

as Fourier series expansions).

To show how this might happen, we return to the update formula Eq. (F.6) from 

which we wish to show that:

llyn+,ll2 =  l|y"ll! - | C „ | ! . (F.12)

This follows because:

|jy n+ l | |2  =  < y „ + l j y n+l  >  =  < y n _ C n e n  y n _ C n e n >

=  ||y" ||2 +  |(7»|3||en||a -  C n < e„ ,y n >  - C *  <  y n , e n >

= II Vn\\2 - \ C n \ 2 (F .13)

Using Eq. (F.12) recursively, we have:

{i3 = J  z\g(x)\*dx (F.9)

= j ( x  -  ^a)3jff(x)|3da! (F. 10)

then if g is the Fourier transform of g, the choice of p as a Gabor function achieves the minimum 
bound of A3A$. For a proof, see ([39], pp. 56-60). The product that the Gabor function minimizes 
is the area of what is called the "Heisenberg box” which is a means of identifying what area of 
the time-frequency spectrum each waveform occupies. Such boxes look like the shaded boxes Fig. 
(VII.2) and Fig. (VII.3) in Ch. VII. For a detailed theoretical discussion, see [53].

6 We recall from above that all e; are normalized so that ]|e,|| =  1.



www.manaraa.com

253

l b i r = E | C „ | 2  + l l / l l 2 .  ( F - 1 4 )
Tl—0

Using a theorem from Projection Pursuit regression (due to Jones [112]), Mallat 

and Zhang [131] are able to prove that Hs^H2 —> 0 as /  —» oo. Thus, their procedure 

converges in the L 2 sense that:

IMIJ =  E  o l  (F .i5 )
n=0

This is exactly the sense in which orthonormal expansions such as Fourier series 

converge.

The reason Mallat and Zhang are able to adopt a theorem from Projection Pursuit 

Regression is that Matching Pursuit is a special case of Projection Pursuit in which the 

variable X  is one dimensional and the functions gi((3±x) are assumed to be proportional 

to functions e;(a:) in a fixed ‘dictionary’. Thus, while Projection Pursuit regression 

allows any choice of the functions <7;, Matching Pursuit analysis restricts the functions 

gi to be in a certain class as defined by a fixed ‘dictionary’ of functions.

H ow  A u to r e g re ss iv e  P u rsu it  F its  In

We now relate Matching Pursuit and Projection Pursuit to the method proposed

in the thesis. In the thesis, we replace the basis functions e;(x) of Matching Pur­

suit analysis (in Eq. F.4) with model components which include a window function 

multiplied by an explanatory variable. Our set of data-dependent model components 

is hence analogous to the “dictionary" which Mallat and Zhang use in constructing 

their nonorthogonal series expansion. Our procedure in selecting model components 

to include in the analysis is also analogous to the procedure proposed by Mallat and 

Zhang.

Our procedure is similar to Projection Pursuit regression because we are interested 

in approximating a conditional expectation which depends on a set of explanatory 

variables. The difference is that we assume that the conditional expectation assumes
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a particular form in that it is linear in one set of explanatory variables but that the 

slope of this linear relationship depends on other explanatory variables (in the thesis, 

we focus on variables related to time).

Thus, there is a sense in which our analysis is more ‘parametric’ than either Pro­

jection Pursuit or Matching Pursuit because we restrict the regression function to 

be of a specific form. Another important difference between our approach and both 

Matching Pursuit and Projection Pursuit is that, in the thesis, we consider orthog­

onal projections whereas both Matching Pursuit and Projection Pursuit work with 

nonorthogonal projections. The main reason for focus on nonorthogonal projections 

in these settings is computational; the method of ‘back-projection’ is sometimes used 

in Projection Pursuit to orthogonalize and there have also been experiments with an 

orthogonal version of Matching Pursuit [161] [56],

Since the main reason for using nonorthogonal projections in these other methods 

is computational, it is useful to provide some details of alternative methods for com­

puting estim ates for Autoregressive Pursuit and how the nonorthogonal projections 

relate to our orthogonal projections. This helps relate nonparametric methods for 

high-dimensional data (such as can be used to estim ate index models in econom et­

rics) to ordinary regression analysis such as we use in the thesis.

R ecipe for a Simplified Algorithm

We start with a set of K  potential model components or regressors. We multiply 

each regressor by a number such that each regressor hi satisfies:

£  M * ) I2 =  1 (F.16)
( = 1

where t is tim e and T  is sample size. The researcher chooses the set of model com­

ponents. One possibility we suggest in the main text is a set of constant windows 

multiplied by a particular lag of the data. For instance, we can define a family of 

windows with width for k =  0 , . . .m where m  <  log2(T ). For each k we might
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consider windows which start at all positions t  £  [1, AjfcT] for Ajt <  l 7 or we may want 

to consider a more restrictive set such as windows which start at t  =  r ^  +  1 for some 

0 <  r  <  r* <  2k.8 Once we have selected the windows with which to m ultiply the 

lagged data, we then choose normalizing constants so that Eq. (F.16) is satisfied.

Once the K  model components are selected we define y° =  y where y  is the 

data. We then run a univariate regression against each of the model components and 

pick the regression with the the highest r2. We then call y 1 the residual from that 

regression. We then run univariate regressions of y 1 against each of the K  model 

components and pick the regression with the highest r2. We call the residual y 2 and 

then regress y 2 against the K  model components. We call y3 the residual of the 

regression of y 2 against the model component which produces the highest ra. We 

then run a univariate regression of y 3 against each of the K  model components and 

so on. We continue the procedure iteratively. To summarize, at any stage n , we make 

y11* 1 the residual from the regression with the highest r2. It follows from Theorem 1 

(see Ch. IV) that this procedure converges to the orthogonal projection against the 

span of all included model components. It follows from the results in Ch. V that in 

any sample the rate of convergence is exponential in the number of iterations.

If we wish to implement a “general to specific” type testing strategy, we can 

estim ate a large model and then eliminate one model component at a time and test 

for statistical significance. Alternatively, we can implement a procedure which tests 

whether to stop at each iteration of the estimation procedure. In Ch. VI, we define a 

new test for nonstationary processes which can be used in either case. One advantage

7 The restriction A*. <  1 is im posed to  insure that all normalized windows are bounded as is 
required by the theory. W ithout this restriction, window functions could have arbitrarily sm all 
widths which would im ply that the (mean-square) normalized window functions could be arbitrarily 
large. In another setting (in which generalized m ethod o f m om ents estim ates are applied to a  test 
for one-tim e structural change), Andrews [7] has recommended that At =  0.85.

8 Again, r* <  2* so that normalized window functions arc bounded.
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of the approach here is that model components are selected step by step according to 

their explanatory power rather than some arbitrary criterion such as what lag they 

represent. After we have selected a model, we run a single multiple linear regression 

to estim ate the coefficients.

Com m ents on the Simpfied Algorithm

The simplified algorithm is an effective computational method but it breaks down 

when there are large correlations among potential model components. We can elim­

inate many of the deficiencies of the simplified algorithm and retain many of its 

advantages by using a few fast subiterations. By subiteration, we mean a procedure 

which is performed as part of the main procedure at each iteration. The idea of 

subiterations is at any given iteration to construct a new set of model components 

which includes only the previously selected model components and then in a sense to 

perform a separate decomposition according to the simplified algorithm; we can run 

a few subiterations during the procedure if we wish to keep the computed projection 

at any stage ‘close’ to the multiple regression which would be implied by doing least 

squares estimation.

We can present a recipe for implementing such an approach. We again start with 

a set of K  potential model components or regressors. We multiply each regressor by 

a number such that each regressor hi satisfies:

E N ‘ )I> =  1 (F.17)
t~l

where t  is tim e and T  is sample size. The researcher chooses the set of model com­

ponents (which may for instance be the family of model components with constant 

window functions referred to in the section above).

Once the K  model components are selected we define y° =  y where y  is the data. 

We then run a univariate regression against each other model components and pick 

the regression with the highest r2 or the highest r 2 weighted by some user-selected
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weights .9 We call the model component which maximizes our r 2 criterion h\.  We 

call the residual from this regression y 1. We then run a univariate regression of y 1 

against each of the model components and pick the regression with the highest r 2 (or 

weight thereof). We call the model component in the regression which maximizes our 

r2 criterion h2. We call the residual y 2,0.

We now begin subiterations. We run univariate regressions of y 2,0 against hi and 

h2 and select the regression with the highest r 2 (hi since the regression against h2 has 

an r 2 of zero) and call the residual y2'1. We run a univariate regression of y 2’1 against 

hi and h2 and select the regression with the highest r 2 ( h2 since the regression against 

hi has a r 2 of zero) and call the residual y 2'2. We continue until |y2-m+1 — y 2-m| <  e 

and call the result y 2'*. We could also consider a fixed number m  of subiterations and 

call the result y 2'*.

Once we have computed y 2'*, we continue the procedure by computing a third 

regular iteration. That is, we run a univariate regression of y 2’* against each of the 

model components and pick the regression with the highest r 2 (or weight thereof). 

We call the model component in the regression which maximizes our r 2 criterion h3 . 

We call the residual y3,0.

We now begin subiterations for the third iteration. We run univariate regressions 

of y3,° against hi, h2, h2 (all previously selected model components) and select the 

regression with the highest r 2 and call the residual y3'1. We run separate univariate 

regressions of y3,1 against each of the previously selected model components. We 

select the regression with the highest r 2 and call the residual y 3,2. We continue until 

jy3,m+i _  y3,m | <  € or we have reached a prespecified m  and call the result y 3,\

Thus, to summarize, at any iteration to, we start with data y"1*, select a new 

model component hn+1 and then compute subiterations in which the only possible

9 If we want to  reduce the variance o f estim ates at the expense o f som e bias, we m ight want to  
put more weight on m odel com ponents which involve more o f the sam ple.
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regressor variables are kj  for j  =  l , . , . n  +  1. We continue subiterations indexed by 

m  until: |^n+1>m+1 — yn+1.m| <  e. y / e cal] the result yn+1'*. We then continue with 

an ordinary iteration to pick /in+2.,.. We continue iterations (and the corresponding 

subiterations) as necessary.

The purpose of subiterations is to keep estim ates close to the multiple regression 

(orthogonal projection) against all included model components. W ith a few subitera­

tions at every iteration we can improve the properties of the simplified algorithm while 

retaining its computional flexibility. If we consider arbitrarily many subiterations for 

each iteration, it follows from Theorem 1 (Ch. 4) that the procedure converges to an 

orthogonal projection against all previously selected model components which is the 

procedure proposed in the thesis.10 Thus, subiterations provide the conceptual link 

between Projection Pursuit and Matching Pursuit which are based on nonorthogonal 

projections and our main procedure which is based on orthogonal projections.

To understand how subiterations work in practice, let us consider an example. 

We consider what happens when we restrict analysis (for illustrative purposes) of a 

second order autoregressive model to the two correct model components. While we 

assume that there are only two model components in the analysis, the results would 

not change as long as we picked the correct model components in iteration 1 and 2. 

We consider the model:

y(t )  =  0 .16y(f -  1) +  0 .64y{ t  ~  2) +  n(t) (F.18)

where u(t)  is white noise. We use the simplified algorithm to decompose a 512 sample 

realization of the tim e series. On the first iteration the algorithm chooses the second 

lag (with a window over the whole sample) with an estim ate of 0.74 and on the second

10 Let Tik be the space spanned by the m odel com ponents included up to iteration k. Since Ti t  is a  
Hilbert space, Theorem  1 proveB convergence to a  projection against all included m odel com ponents. 
If the span o f the m odel com ponents is Hk,  subiterations thus converge to a projection against the 
space Tik-
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iteration it chooses the first lag with an estimate of 0.137. We now show how the 

subiterations work to correct the error made in the main iterations due to correlations 

among the selected model components. When the correction terms summized in Table 

F,1 are added in, we have estimates of 0.6384 on the second lag and 0.188354 on the 

first lag which results in a substantial improvement in the quality of the estim ate on 

the second lag.
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Coeff. Parameter Est. Iter. Subiter. Begin End Lag

25.404963 0.736441 1 0 0 512 2

4.738204 0.137347 2 0 0 512 1

-2.465702 -0.071476 2 1 0 512 2

1.283135 0.037195 2 2 0 512 1

-0.667735 -0.019356 2 3 0 512 2

0.347485 0.010073 2 4 0 512 1

-0.180829 -0.005242 2 5 0 512 2

0.094102 0.002728 2 6 0 512 1

-0.048970 -0.001420 2 7 0 512 2

0.025483 0.000739 2 8 0 512 1

-0.013262 -0.000384 2 9 0 512 2

0.006901 0.000200 2 10 0 512 1

-0.003591 -0.000104 2 11 0 512 2

0.001869 0.000054 2 12 0 512 1

-0.000973 -0.000028 2 13 0 512 2

0.000506 0.000015 2 14 0 512 1

-0.000263 -0.000008 2 15 0 512 2

0.000137 0.000004 2 16 0 512 1

-0.000071 -0.000002 2 17 0 512 2

Table F.l :  Two iterations of the general form of the algorithm on 
an AR2 model. The algorithm picks up the correct lag 
lengths and model components and subiterations correct 
the original parameter estimates for bias.
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A u x ilia ry  R e su lts  on T im e-F req u en cy  S p ec tr a l E st im a tio n  w ith

A u to r e g re ss iv e  P u rsu it

We consider a time series y  described by the equation:

T - ' y  =  e (G. l )

where e is a vector of uncorrelated random variables and T -1 is a matrix.

In the thesis, we have developed a way to estim ate the (operator) inverse of T.  

We let T ~ l =  S. Then C ~ l =  S*S  and, up to a scale factor, C  is the covariance 

matrix for the tim e series. To find the eigenvectors of C , we need only to find the 

eigenvectors of C ~ l

T h eo rem  14 Let G be a matrix. The eigenvectors C are the same as those of C~* 

P roof: Consider the eigenvalue equation:

Cj/ j  =  XjTpj

M ultiply both sides by C -1 and divide by A;-:

(G.2)
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Thus, the eigenvectors (eigenfunctions) of C  are the same as those for C ~ l and 

the eigenvalues for C  are the inverse of those for C -1 I

We consider the time-varying stochastic process:

y (t)  =  g ( t)y ( t  -  1) +  e(t)

Here, the operator S  is 1 — g(t)h .  The matrix representation of S  is:

S =

(  1 0 0 0

- g ( t  i) 1 0 0

0 - g ( t 2) 1 0

\  0 0 0 !

0 \

0

0

-g(in-1) 1 )

(G.4)

(G.5)

This implies C  is of the form

c-1 =

( i + g i h y  - g { i  0

- g {  f i)  l + g { t 2)2

0 ~ g (h )

0 0 0

0

0

0

- g { t n - l )  

1

(G.6)

When the g ( t ,) are time-invariant, the lim iting eigenfunctions of the covariance 

matrix are sine and cosine waves. It is useful to examine what small-sample effects 

are present for the analysis of some of the short tim e series available in economics. 

In Fig. G .l we show the 10th largest eigenvector of a covariance matrix for a tim e 

series of length 64 where the first order coefficient is: g(t)  =  0.4; this and the other 

eigenfunctions appear close to the theoretical time-invariant lim iting eigenfunctions. 

In Fig. G.2 we show the largest eigenvector for the covariance matrix of a
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e i

Figure G .l: An eigenfunction of a short stationary autoregressive pro­
cess.

4

■a ■

4 n *j »

Figure G.2: An eigenfunction of a short nonstationary autoregressive 
process.

switching autoregressive process of length 64 where the autoregressive parameter 

switches from 0.4 to —0.4 midway through the tim e series; there appears to be a 

clear delineation of the break point so that the eigenvector analysis would appear to 

be meaningful. In Fig. G.3, we show the second largest eigenvector of a sm oothly  

varying autoregressive process (such as we introduced in Ch. Ill); this as well as the 

other eigenvectors look like the wavelet functions used in Ch. II and Ch. VII. 

N o n sta tio n a r y  S p ec tra l E stim a tio n
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4

a ca *1 #'j

Figure G.3: An eigenfunction of a smoothly varying autoregressive 
process.

«a

a

ft >J *0 H

Figure G.4: The first order lag coefficient for the sm oothly varying 
autoregressive process.
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Earlier, we defined a nonstationary spectrum in terms of a sum of Cohen’s class 

distributions of eigenvectors or eigenfunctions of the covariance matrix:

t■

S(t,u ,)  =  ' £ C ? C ' !(t,u,) (G .7)
i

where e; are the eigenvectors (eigenfunctions) of the covariance matrix(operator) and 

Cei means the Cohen’s class distribution of e,-. It is useful to examine some properties 

of this spectral estimator.

T h eo rem  15 When the Cohen’s class kernel is a Wigner-Ville distribution, the spec­

tral estimates from the nonstationary spectral estimator:

S ( t t<j) =  £ C ? C „ ( i lU ) (G .8)
i

are the same as those of the Wigner-Ville distribution of the local autacovariance 

kernel for  a discrete time series (c.f. Eg. VII.24):

IV ( t ,u )  =  £  K  ([t +  §], [t -  | ] )  e - 1' ” ' (G .9)
«eZ

where:

K ( t  +  s , t  — s) =  E  ( X ( t  +  s)X *{t  -  a)) (G.10)

is the local covariance kernel of the random function X  and the brackets denote integer 

part.

Proof:

We note that if e* are the eigenvectors of the covariance kernel K  of the data, we 

have:

H  Ajtefe(3)e*(i)
Jt

( G . l l )
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which is linear in the kernels:

Ekf s ^)  =  ek(s)e*k(t). (G.12)

The Wigner-Ville distribution of the eigenvector e*. of the covariance kernel K  is:

= E E k ([* +  §], It -  | ] )  e - 2"'"- (G.13)

But, by Eq. (G .l l )  and Eq. (G.12), we have:

K  ([t + | ] . I ‘ - | ] ) = E ^  (l* +  §1. -  j l )  (0.14)

Thus, the Wigner-Ville distribution for the covariance kernel is:

* A

=  E - W . ( ' > " )  (G-1S)
k

Therefore, in the simple case where the Cohen’s class distribution used to de­

compose the eigenvectors is the Wigner-Ville distribution, our spectral estimator is 

equivalent to the direct Wigner-Ville distribution of the covariance kernel. I

In terms of the covariance matrix K  in Eq. (G.16), it is useful to explain what 

terms enter the Wigner-Ville distribution. At tim e t  =  1, for instance, the term  

corresponding to 3 =  0 is f f ( l , l )  and the term corresponding to 3 =  1 is J f( l ,0 ) .  

Likewise, the term corresponding to 3 =  — 1 is i f ( 0 , l ) ,  the term for s =  2 is K { 2,0)  

and for s =  —2 is i f ( 0 ,2).
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*  =

/  * ( 0 ,0 ) * ( 0 ,1 ) * ( 0 ,2 ) * ( 0 ,  T
" 1 }  )

* ( 1 .1 ) * ( 1 ,2 )  . ■ * ( 1 , T - - 1 )

* ( 2 ,0 ) * (  2 ,1 ) * ( 2 ,2 ) * ( 2 ,  T  -- 1 )
(G.16)

; : ; : k (t - 2 , t - i )

\ K ( T  — 1 ,0) K ( T  — 1,1) K { T -  1,2) : K ( T - 1 , T - 1 ) J

Thus, at each t t the sequence we Fourier transform is symmetric about 0 by 

symmetry of the matrix Eq. (G.16); thus, our local spectral estim ates are real. 

However, these local spectral estim ates may not be positive.

R em ark  3 Our definition of a local Wigner spectrum for a discrete series is different 

from  the standard definition in the literature (c.fi, Eq. VII.24) because that definition 

does not make sense at a minimum fo r  M A {  1) processes. The definition we use is 

analogous to that developed previously in [37] (c.f., [110]).

We can now compare our estimates to those of Tjostheim [195].Given a model:

y(t) =  £  -  i) (G .i7 )
i>°

E { e ( t ~ j ) e ( t - k ) ) = 6 j - k, (G.18)

Tjostheim ’s spectral estim ate is:

s ( ^ )  =  ^ 1  (G.19)
27r J=0

Tjostheim ’s estimator takes the Fourier transform of a column of the covariance

matrix and imposes that negative autocovariances 7( —&) =  7(&)- Thus, at t =  1,

Tjostheim would use elements K ( 0 ,1) for 5 =  1, * ( 1 ,  1) for 5 =  0, K { 2,1) for 5 =  1
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and so on. However, for any fixed column of a matrix, Tjostheim ’s symmetry assump­

tion (for instance, that JffO,!.) =  ^ (2 ,1 ) )  can only be imposed if the time series is 

covariance stationary, which is exactly what Tjostheim wanted to avoid assuming.
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A P P E N D I X  II

Inconsistency o f M ode] Choice

In this appendix, we provide a simple example in which the procedure we have

chosen selects the wrong model component asym ptotically but in which the coefficient

estim ate on the wrong model component converges to zero in probability.

We consider a tim e series defined by the switching autoregressive model introduced 

in Ch. Ill:

y( t )  =  p ( t ) y ( t  -  l )  +  tx(t) (H .l)

[ Po t <  0
/? (* )=  . ■ (H.2)

I — flo otherwise

As usual, we assume that:

u ( t ) ~  N ( 0 , a 2) (H.3)

and that we have observations on the process on the interval [—L  +  1, L] so that the 

total sample size for y  is T  =  2L.

We consider only three potential model components:

t <  0( ..

V f e - M .  
I 0

=  • (H.4)
otherwise
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* . w =
lo

t >  o

otherwise

h3(t)  - y( t  -  2)

(H.5)

(H.6)
VSte-i+i»(* -  2)!

Each model component thus satisfies ||/ii|| =  1. Our first result is that as L —► oo, 

there are cases in which the model component h3 is chosen instead of the correct 

model components h\ and h2.

T h eo rem  16 I f  |/30| >  probability of choosing k 3 on the first iteration con­

verges to 1. In the converse case the probability of choosing h3 converges to zero. 

Given that hi or k 2 is selected on the first iteration, ha will be selected with probabil­

ity zero asymptotically on the second iteration.

P roof: As L —> oo,

1

V 2L \
E y(i-2)! -> -7=-;

l=-L+l \ / l  -  K
(H.7)

by the continuous mapping theorem and the fact that (3% is equal for t >  0 and t <  0. 

Similarly:

1
7 l \ t=-L+l d  i  -  p i

i
7l \ t =l \A — @0

(H.8)

(H.9)

We define:

We next compute the < y f hi >  which we define as:
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1< y i hi > =  (H-n )

We have:

, . i  E i= -t+ i sC 0y(4 -  J)!/j h i  > =  —— . (H .12)
7 E v /£ ? = - w > » ( * - i ) J

We note:

T  S  ~  x) -*■ P°al  (H.13)
L  t=-L+1

Thus:

Ci = <  1/) >-*■ PoV0 (H.14)

Similarly:

C2 = <  y , h 2 > —> — /3ocr/3 (H .15)

Finally, by the same logic:

C3 = <  y ,h 3 >~* V^pQO-p (H .16)

where /3q appears because it is the second order autocovariance of y. We next compute 

the asym ptotic variances of the Gi. We note that because of our normalization factor 

in the hi’.

L V a rC i ->  a 2 (H .17)

LVeltC2 -> a 2 (H .18)
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L VarOj -> cra (H.19)

Thus, each of the Ci are asymptotically normal with the same asymptotic variances.

Given that the variances of the Ci converge to zero, we pick C3 if \/2/3q >  \Po\ or 

i f y / 2 0 o >  1. Thus, model choice is inconsistent at the first stage of the algorithm  

asymptotically if |/?o| >

Otherwise, we pick either hi  or h2 first. Suppose we pick hi  or h2 first, then we 

must prove that the other model component will be selected next. After subtracting

off the projection against the selected model component, the residual on one half of

the time series is white noise. Suppose we have selected h\.  Then we have that:

C3 = <  y,fi3 > ~ > \/2/3o03 (H.20)

where we have not yet defined 0 3 . Noting that:

y(t - 2)3+ t y { t 2)3 -  t  ■+ v £ m  CH-21)
we have that:

£72 ff2

We also have that:

~ <  y , h i  >  —> 0 (H.23)

since for the first half of the tim e series /?o =  0. Likewise:

C 2 = <  y,  h2 > -»  -{3O(70

We next compute the asymptotic variances for the Ci. We have:

(H.24)
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L V a r C i - x j 3 (H.25)

since the first half of the tim e series is noise,

L VarCa —» a 2 (H.26)

since the model is correctly selected, and:

iV arC h ^  <r2. (H.27)

Thus, the variances of the C7* do not change and they converge to zero as sam ple size 

gets large. Therefore, given we selected C\ on the first iteration, we select C 2 as long

as:

C \ >  C \  (H.28)

or if A >  0 where:

A =  0.5/?2^~2 (H.29)

which requires that: —2 -f 2/32 — f3A <  0. The equation has complex roots and when

|/91 <  1, 2/82 — ft4 <  2 so that h2 is always selected. I

We next show that if we incorrectly select the model component h2, the regression 

coefficient on h$ converges to 0 after we select h\ and h2 and iterate an infinite number 

of tim es.

T h e o r e m  17  The estimated second lag relationship converges to zero provided h\ 

and h2 are included in the analysis.
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P ro o f: We consider the equation:

y (i)  — — 1) +  A jIo o y ( t  — 1) +  P zv it  ~  2) +  e(i) (H.30)

The least squares coefficient for p 2 must converge to zero because y { t  — 2) has no 

additional explanatory power for y,  but it is helpful to review this point analytically.

For our case, the least squares estim ates are given by the vector W ~ l z'y where in 

the large L  lim it we have:

W  -  0.5

M  0 fa  \

0 1 - p a

\Po —Pa 2  J
and:

 ̂lt<oZ/(  ̂ — 1) ^

U>oy{t  -  1) ■ (H.32)

^  y(t ~ 2 )  J
Using partitioned matrix formulas the inverse of W  has a bottom  right element

of:

W #  =  2(2
Pa

-Pa,

1 0' 

0 1

Pa

-Pa,
r 1 =  2(2 -  2PI)2\—1 (H.33)

Similarly:

W ~ l — - 2 __ ——
2 - 2 P I

(H.34)

W S1 =  2:
Pa

' 2 - 2  P I

The explicit formula for the least squares estim ate of p 2 is

(H.35)

P2 -> 0.5/3oW3I 1 -  0.3/JoWVa1 + (H.36)
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Plugging in our expressions we have:

fi ^  I — 0 (IT 171!
02 + 2 ^  -  °- (H-3?)

which is what was we wished to show. I
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A P P E N D I X  I

A  R e su lt  on  M a x im a  o f  N o rm a l V ariab les

T h eo rem  18 Let {ei}£Li ê N  normally distributed random variables with a maxi­

mum variance o f I and define M n  — maxfejj £2 * •••ew] then:

P  QJWjv | >  \/2A log N j  <  i N 1-*  (1.1)

for  any X >  1 and 7  =  . 1 ■■■.
V  t  l o g  2

P roof: This proof comes from ([114], p .218-219):

For u >  1:

1 . .  (1 -  . - )  «-?* <  ( >  u) <  1 e S _
/̂27  ̂ u -  \ u \ i

since:

and:

Pie >  u) — ,—-e /
JO

e uye 3 dy

1 -u 3 f 1 1
>  —7= e “  /  e~uve~ idy

\Z2tt Jo■\Z2tt
1

V̂ 7T
^  ^  1 -  e"u

e j e 3 ----------
u (1.3)

P (e  >  u) 1 _id.

I T  3 1V^TT
e_uve 3 dy
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1 - UJ r°°

1 =«* 1

± -u- r°°
<  ^ = e ~  /  e~uydy

Jo

e 3 — (1.4)
^/2n u

When the e, are normally distributed random variables, not necessarily indepen 

dent, we have for any A > 1:

Thus:

P(|e.-| >  \J2 \  log N ) < (1.5)

P (\M „ \  >  ^ A l o g N )  < (1.6)
i/ tt log 2

for any A >  1. Therefore, as N  —> oo,

P ( lim >  1) =  0. (1.7)
s / 2 \  log N

for any A >  1

We need only this result in the thesis, but much more can be said when the random 

variables have a known correlation structure. For a survey of results on extrema see 

[118]. For a survey of results on extrema of the normal distribution, see ([160], ch. 

8).
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A P P E N D I X  J

N ote on C om putation of Estim ates

In this Appendix, we discuss two useful approaches to computation of estimates. 

The first approach works in the tim e domain and relies on a choice of normalization 

factor to reduce computational complexity.

Since at any stage of the analysis, we need to compute many simple regressions, it 

is useful to have a computational trick with which to compute these regressions and 

choose the maximal r 2 quickly. This trick can be explained as follows. The simple 

regression equations we wish to estim ate at each iteration n  are:

y n( t ) = ! 3 h i(t) +  e4(t)  (J .l)

where ej(i) is a residual term which need not be independently and identically dis­

tributed. At each stage of the procedure, we need to compute the r 2 for a regression 

of the type Eq. (J .l)  for all model components in the set of model components we 

are considering.

For Eq. (J .l):

Using Eq. (J .l) , the explained sum of squares is:

T - f e f ~ i M 0 y n( 0 l a

( J ' 3 )
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Our goal to avoid computing the denominator at every iteration so we define a 

new model component: Zi(i) to be:

( J ’ 4 )

Plugging in Eq. (J.4) to Eq. (J.3), we have that the explained sum of squares is:

£ / ? 2A.2 =
t=i

( J . 5 )
.t =  l

so that if we wish to find the model component which maximizes r 21 we work with 

model components normalized as in Eq. (J.4). This way we can choose the best 

model components quickly by computing the sum on the right hand side of Eq. (J.5) 

one model component at a time.

Moving back to the original regression equation Eq. (J .l)  and using the definition 

of Zi we have:

y n(t) ~  pzi ( t )^ £ / t i ( i ) 2 +  *4(i)
(=i

=  az{ { t ) (J.6)

where a  — 0 \JYh=i hi( t )2. Thus, we can recover estimates for (3 from estimates of a  

by dividing by the normalizing factor; Ni =  yf^2j=1 hi(t )2.

This particular method of computing regression coefficients and r2 is especially 

valuable because it enables us to use fast convolution algorithms such as the Fast 

Fourier Transform (FFT ). Let us explain. At any stage n, we want to compute the 

sum on the right hand side of Eq. (J.5). Since our model components hi are composed 

of a window function times a given lag y( t  — i;)( we can construct for each lag the 

function it>J,(f) =  yn{ t )y( t  — L')- Since we ordinarily consider window functions at 

many possible locations, we can compute the regression coefficient for a given type of 

window function centered at any given location by:
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(1) computing the Fourier transform of the function lo ^ i)  and multiplying with 

the Fourier transform of the appropriate window function family then inverse Fourier 

transforming the product.

(2) at each location dividing by the appropriate normalizing factor which also 

can be computed at the beginning of the analysis through use of the Fast Fourier 

transform.

Appendix M contains estimates of the amount of computation and storage re­

quired for this particular approach; this shows formally that it is indeed possible to 

implement our approach on personal computers and workstations.
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A P P E N D I X  K

N otes on Similar Procedures

The model selection procedure we describe in Ch. II is iterative. As a resultj we 

may not be selecting the most parsimonious representation. Why? Given the choice 

of a set of potential model components, we must devise a practical way of determining 

estim ates of the univariate tim e series model. The standard time series approach of 

adding one lag at a tim e or examining all possible lags will not do when we need 

to examine an enormous number of possibilities; choosing N  regressors (where N  is 

a number less than sample size T ) from P  possibilities (where P  might be K , the 

number of model components) is ordinarily not a feasible computational procedure 

for P  or N  large. For instance, if P  is a constant multiple of N  (greater than 1), the 

number of regressions we must compute grows exponentially in N . 1

Even though we may choose regression equations which are not optimal in terms 

of parsimony, it is a general theoretical result that the procedure still produces es­

tim ates which are equivalent approximations of the regression relationship. In other 

words, the procedure converges (as the number of model components in the analysis 

increases) to a projection against the same space as would an exhaustive search of

1 Use Stirling’s approxim ation for the factorial function in com puting the number o f  com binations. 
In com puter Bciencc, an JVP-complete problem is a problem for which there exists no algorithm  to  
com pute a solution in polynom ial tim e [111]. We have reason to believe that an approach based 
on selecting the best possible regression is com putationally intractable in the sense o f being N P -  
com plete. For M atching Pursuit analysis o f functions (see Appendix F ), D avis [55] has proven 
form ally that under som e technical assum ptions the procedure is JVP-completc.
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all possible models. Convergence to a projection does not imply consistent estim ates 

unless further conditions are met which are discussed in Ch. IV.

We now explain some potential alternative procedures similar to the one developed 

in the thesis and discuss why we have chosen the particular approach outlined in 

Chapter II. Recall that we have chosen to continue at stage j  of the estimation 

procedure by running simple regressions of the residual y 3~l on each of the remaining 

model components to select the best model component h?. We then run a multiple 

regression of y  against the model components hk for k <  j  and call the residual from 

the regression y 3.

There are a variety of different procedures which also produce statistically mean- 

ingful results which we could have advocated. For instance, we could have, for each 

model component not yet included in the model, run separate multiple regressions 

of yJ_1 against the potential new model component and hk for k <  j .  In this case, 

we would choose to include in the model, the model component which maximizes the 

R 2 from the multiple regression (or some weight thereof). The reason we did not 

implement this approach is that it requires significantly more computations; a direct 

implementation requires approximately K  times (where K  is the number of model 

components) more computations than our approach; since K  is large, this approach 

does not yet seem practical for exploratory data analysis applications.

Since we must run linear regressions at each stage of our approach and each linear 

regression takes 0 (W 3) operations where N  is the number of regressors, the total order 

of computations from the regressions alone is 0 { N A).2 Thus, our procedure may be 

relatively expensive computationally for models with large numbers of regressors.

3 We m ight consider using block m atrix inversion algorithm s to reduce the order o f com putations, 
but if  used in an iterated fashion, these algorithm s are num erically ill-conditioned. We note that 
we could com pute regressions in a theoretically equivalent manner by adding up coefficients from  
regressions o f the residual a t each stage on all previously selected m odel com ponents; this is equiv­
alent to G ram -Schm idt orthogonalization o f the regressors and m ay result in numerical instabilities 
so that it is not recommended.
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Fortunately, there is also another procedure which is much faster and is applicable 

to cases where correlations between selected model components are weak as seems to 

be the case with large financial datasets where there is not much temporal depen­

dence in the data.3 This method simply computes the residual at any stage by a 

simple regression against the selected model component instead of using the multiple 

regression. This procedure is introduced and reviewed in detail in Appendix F. Since 

there seem to be some statistical disadvantages to this procedure, we show in Ap­

pendix F that there is a fast way to improve this procedure. This faster procedure is 

well-defined in a technical sense in that it converges to a projection against the span 

of all potential model components.4

Therefore, our approach is a compromise which is designed so as to be imple- 

mentable on modern workstations and personal computers and so as to be useable as 

an exploratory data analysis tool. While we have selected one particular approach to 

focus on, the researcher should be aware of alternative approaches in case of unusual 

datasets or computational facilities.

3 This observation is based on numerical experim ents, som e o f  which are reported in an earlier 
paper [151].

4 A lthough we show convergence of another m ethod in Ch. IV, our remarks in the proof show  
how to m odify it to handle the special case in Appendix F.
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A P P E N D I X  L

N ote  on K ernel R egression vs. A daptive R egression

In this appendix, we address the basic question of why we want to use a complex  

adaptive regression m odel such as we have developed in the thesis instead of something  

more simple such as a local weighted moving average estim ate.

A simple approach to estim ating time-varying models is to simply run a weighted 

or rolling local least squares m odel to estim ate parameters. Consider for sim plicity a 

fractional autoregressive m odel:1

? ( 0  =  6i ( ^ ) s C * - 1) +  c( 0  (L 1 )

and 6 1(a) (a — 4 )  is a measurable function on the interval [0 , 1 ]).

We then consider the problem of minimizing the locally weighted sum of squares:

'  (*■ ( I ) )  ( W )  (*»> -  (? )  *<•
where the function K (s) €  C°  satisfies:

J 1 K { s ) d s ^  1, (L.3)

is positive, and has K ( l )  =  K ( —1 ) =  0 .

- i ) (L.2)

1 T h e m odel is nam ed a  fractional m odel because the autoregressive param eter depends on the  
fraction o f tim e rather than tim e.
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The least squares estim ate for 6i(s) is:

i p - A ( L . 4 )  
5 ^ = 1  * ( = ? ¥ ( - I ) 3

Given that we can use an estimator of a local autoregressive coefficient by a simple 

local least squares method which averages over more and more points local to a given 

point s (E (0 ,1 ) as the size of the sample increases, why do we need to consider 

something else?

The main issue is conceptual. When we run a local least squares regression, we 

im plicitly put a window of a given size on the data. Since the properties of the data 

or components of a model may be constant over an interval much larger or smaller 

than that of the chosen window width, there is a sense in which we lose statistical 

precision if the true model has components which evolve over tim e intervals different 

than the chosen window width.

The idea of our method is to use a parametric procedure which considers linear 

combinations of potential model components. As a result, our method lies somewhere 

between the use of local least squares estim ates and ordinary least squares autore­

gressive estimates. Local least squares are inaccurate if the true model is a linear 

time-invariant autoregressive process whereas autoregressive estimates are inaccurate 

if the true model is evolving over time. Since locally we do not have a large amount of 

data, our intuition is to try to retain a parametric focus as much as possible because 

of the superior statistical properties of parametric models.



www.manaraa.com

286

A P P E N D I X  M

C om putational R equirem ents

It is helpful to review issues of com putational requirements for a special case of 

window functions. We consider the fam ily of window functions defined by Gaussians 

and their derivatives.

d d
■W..M =  g p e~ (M '1)

We assume periodicity. We let d  be an integer which runs from 0 to D. We assume 

that a tim e series has length N  and h assumes values at the N  points of the tim e 

series. We include M  lags in the analysis and consider values of s  at:

52 =  <72j+ vmt (M.2)

where k runs from 0 to V  and j  runs from 1 to Q. We expect Q  to increase slowly 

with N , perhaps with its base 2 logarithm.

For such a m odel, the univariate storage requirements are O fA ffV  +  l )  log2 W + A ])  

where K  is a constant. Therefore, the storage requirements grow slowly with N  and 

do not present a problem for im plem entation on modern workstations or personal 

computers.

If we use the FFT  for com putations, com putational requirements are at each 

iteration:
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0 { M { V  +  l)(£> +  l ) J/V(log2 JV)£?) (M.3)

This shows that computational requirements are quite reasonable so that imple­

mentation for a single iteration on modern workstations or personal computers would 

not seem to be problematic. The computational bottleneck comes from the least 

squares regressions which if we use L  regressors require computations of order L4 to 

do all the iterations. As long as the number of regressors L is small, computational 

requirements are reasonable. However, for large models, the method presented in Ap­

pendix F requires only of order N  computations at each iteration and also converges.
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A P P E N D I X  N

Finite Average Variance Spaces

In this appendix, we provide both technical and intuitive background behind the 

use of the inner product:

£ ^ s )  =  J™ , ^  J  f ( xu vt)g{xt, vt)d}it{x)

= (N .l)

The technical issue is that there is an infinite normalization factor in Eq. (N .l)  

because / ( x t )vt ) and g( x t , v t) may have infinite ‘energy’ or total squared variation on 

the real line.

Let us consider the example of any stationary stochastic process over the interval 

[—00 , 00] or [0, 00]. Since the process has infinite total variance with respect to i, 

the samples from a random process are not measurable sequences or functions. For 

instance, if we take the Fourier transform of a discrete data series of length 2T, we 

have:

s ( 0  =  £ cJei ( f ) (N-2)
i — 0

where:

j{t) = e2™*1 (N.3)
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on =
J 2T + 1

(N.4)

1 T
c . =  2T +  1 x{ t ) e l ( t ) (N .5)

where the data x is periodic with period 2T . Since the series is not square summable, 

if we were to run any infinite regression with Fourier waveforms as regression variables, 

Eq. (N .2) would not hold in the sense that the sum of squares of both sides are equal. 

The reason is that if s ( f )  7  ̂ 0 for any t, it does not follow that:

l i m i £ > ( ! ) r  =  0 (N .6)
J  (=1

which is required for aft) to be in a normed space in the classical sense. Thus, 

measurability with respect to time on the infinite interval is a problem for any analysis.

Since processes with finite mean variance are of intrinsic scientific interest, it is 

not suprising that there has been intensive work in trying to apply the geometric 

insights of Hilbert space methods to such processes.

One way around the problem was provided by the theory of stationary stochastic 

processes which defines a representation of the data in terms of a stochastic integral:

i ( i ) =  [ 2* eiutdZ(tj)  (N .7)
Jo

where dZ(uj) is an orthogonal increment process which satisfies:

E  (dZ(u>) dZ(w'))  =  dFx (u)S(u> -  w') (N .8 )

where dFx  is the spectral distribution function of the data. Each x ( t ) is measurable 

with respect to the distribution function dFx{w)  and we can define a Hilbert space 

norm by:



www.manaraa.com

290

E  [ x { t ) f  =  / 2* dFx (u)) =  a 2 (N .9)
Jo

We can clearly use this representation when there are an arbitrarily large but 

finite number of regimes which begin at different fractions of time. In this case, the 

expectation would be defined as the (weighted) average over different regimes.

Another solution to this problem of measurability is to define a mean value norm:

f (/COffCO) = 5!™ ij^/r CN-10)
Such a norm is equivalent to that used for special Hilbert spaces called Hilbert 

spaces of almost periodic functions ([4], Ch. V, p. 132-138).1 We wish to deal with 

situations with only a countable number of points so that the corresponding definition 

would be:2

£ ( / ( 0 s ( 0 ) =  *im i £ / ( < ) $ ( * )  CN 1 2 )
i ""°° 1 t=i

In addition to Eq. (N.12) (which is equivalent to Eq. (IV .34), we also consider 

the alternative definition which is relevant to our problem:

1 T
£ ( f ( x , v ) g ( x , v ) )  =  (N .13)

1 An alm ost periodic function is a  function such that for every e >  0, it is possible to find som e  
/ >  0 (which depends on e such that every interval o f the x axis o f length I contains at least one 
number r  such that:

1/(1 + r )  - / ( x ) |  < e (N.ll)

for x  E [—00, 00] ([178], p. 254). We use only the norm and not the definition (e.g ., Eq. ( N . l l )  of 
an alm ost periodic function.

3 We note that it follows from a  theorem o f Bohr ([4], Ch. V, p. 132-138) that since there are
countably m any frequencies in the Fourier expansions for alm ost periodic functions /(£ )  and </(£)
that the Fourier series expansion for /(£ )  converges in the Af norm.
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This satisfies the triangle inequality and the Cauchy-Schwartz inequality if /  and 

g  have finite variance.3

In the theory of almost periodic functions, the element zero may be defined as any 

function A such that ([4], p. 132):

£  (A2)  =  0 ( N .16)

We shall define the element zero in the same manner. Thus, convergence in 

the sense of Theorem 1 implies convergence to an equivalence class of functions or 

sequences with zero variance.4 Apart from the normalization factor, this does not 

seem any different from the usual mode of strong convergence in which convergence 

is also to an equivalence class of functions (which can differ in a nonmeasurable 

manner).

Let us consider an example of a fractional cointegrated model for which we can 

define a probability measure in terms of a fraction of the tim e series:

3 The Cauchy-Schwartz inequality is a little bit tricky. For each t:

E ( M <  ( E( f ? ) ) HE ( g 2t ))*

the right hand side of which is finite by assumption. Now:

(N.14)

T  T

^ £ i? ( / i f f i )  < i £ ( l ? ( / (3))>(£(fl03))*
1=1 1=1

t=i J L 1=1

(N.15)

4 Define f N to be a  Cauchy sequence and we wish to  show that it is equivalent to f N +  uN where 
uN is the elem ent A (so that it has zero variance), then by the triangle inequality:

[ £ ( / *  + - / "  - u M)3]*  <  £ ( ( f N +  ( £  ((u "  - u M)3) ) ’ (N .17)

so that if f N converges and u N satisfies £  ((u w -  u Af)3) =  0, f N also converges (c.f., [193], pp. 
98-9). Suppose uN t are zero variance then by the Cauchy-Schwartz inequality f ( u A uM) =  0 
and £  ( (u ^  — u M)3) =  0. If f N converges, it m ust converge to /*  where /*  is an equivalence class 
o f terms which differ by term s o f zero variance ([178], pp. 331).
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3f(0 = c ( |? ) ®(0 + €(0 (N-18)

where e(t) is independently distributed noise and ar(t) is a variable which is inte­

grated. Therefore, in Eq. (N.18), y ( t )  and x{t)  are cointegrated with a cointegrating 

relationship which varies slowly over time.

We define:5

X t ( s ) =

It is known that X r (s )  => -X(s) where ^ ( s )  is a Wiener process, 

regression function Eq. (N.18) has the following property:

c W - ^ z a s T J )  +  ^=<([*T ]) => c (s )X (s) . (N.20)

Thus, we can look at c (s )X (s) as our regression function which is measurable with 

respect to a Wiener measure on the interval [0,1]. We can construct a set of model 

components for ‘cointegrating pursuit’ with large windows multiplied by the data 

and our series expansion for c(s) will converge in a L2 sense. We can say something 

more general in that all we need is that c (s)X (s) is measurable on [0,1]; therefore, 

we might consider problems where follows another process such as a Brownian 

bridge (let ^ ( s )  be an option price) and we might be trying to detect a change in the 

relationship with the process T (s).

In the case of our example (where X (s )  is a Wiener process), Theorem 1 says that 

we can construct estimates such that:6

j ( c ( s )  ~  c(s))2 s da =  0. (N.21)

5 The notation [IV] refers to the largest integer Icbb than or equal to  W.

6 This assum es that £ does not depend on the particular realization o f J f(s).

(N.19) 

Thus, the
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For comparison, in the case where we have a stationary time series with a single 

lag variable (with the fractional autoregressive function c(s)) with slowly varying 

variance cr2(s) on the interval [0,1] (representing the fraction of the time series), we 

have heuristically that:

J ( c ( s )  -  c (s))2£ftr2(s) =  0 (N.22)

Since tr2(s) oc s for the integrated process, there does not seem to be very much 

operational distinction between situations in which we take a limit of T  —*■ oo and 

situations in which the sample paths are smooth enough that we can integrate with 

respect to the fraction of tim e instead.
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A P P E N D I X  O

F ram es and C o m p le ten ess

In this appendix, we prove that if the window functions gj. for model components 

for a particular lag span the same space as the coefficient functions for that variable, 

then under certain conditions, the set of resulting model components spans the same 

space as the regression function.

In Ch. IV, we defined the auxiliary variable v which in our time series context is 

defined in several different senses. For replication models, v  represents tim e or tim e 

modulu a periodicity. For fraction models, v  either represents the current regime or 

the fraction of tim e (£ ) . We define an inner product <  f , g  >  on the space Q  spanned 

by the coefficient functions Cj(u); the inner product is weighted by the measure for v  

which we will denote by

T h e o re m  19 Suppose:

(1) for  each variable Xj:

AjWcjW2  ̂12 I < ch9k > I2 < £;||cj||2, (0 .1)
Aew

for  some subset W j of window functions fo r  model components associated with the 

variable Xj where j|fffc|| =  1 .

(2) The variance of Xj is positive and finite and there exists a constant C  <  oo 

such that:
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sup E  (:Z j { t f ) <  C m i  E  (x f i t ) 2) (0 .2 )

(3) The model components hk in the analysis are defined as: hk(t) =  gjfe(ut):Ej(i).

(4) At least one o f the included variables x j is correlated with the regression func­

tion f :

sup
j

I n {v)E vf x j \  

(£ (x ? )) '  ( £ ( / ’ ) ) ’
>  A >  0

(5) f x j  e  Q fo r  all j ,  

then the set of model components in the analysis satisfy:

(0 .3)

A £ ( f )  <  £
fcC-W

£  f -
hk <  B £ ( f 2) (0 .4 )

m i ) Y
where W  =  Uy VV, so that the generated model components form  a frame and hence a 

spanning set.

Proof:

We note that:

e \ f
hk

mm
W h k ) f

W )
(0.5)

By the definition of hk'.

£ (hl )  =  £ ( d x2j)  (0 .6 )

Using the definition of gk and j|gjt|| =  1 and the assumption on the variances of 

the explanatory variables:

Thus:

0 < inf E (x j ( t )2) <  £ {g \x 2) <  s u p 5 (x j( f )2) < oo (0.7)
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1
sup( E (x j ( t )2)

m h k)\2 < £ \ f
h k

m i w

W h k ) \ 2 
inf* Et(x j{ t )2)

(0 .8)

Now:

£ { f h k) =  £ ( f x jg k) =  £ {zjgk) 

Furthermore, since gk is nonstochastic:

(0 .9 )

£ {zj9k) = <  Ev( z j ) tgk >  (0 .1 0 )

Now, Ev(z j)  6  Q by assumption. In a tim e series context, zj =  (y (i)  — e ( t ) ) y ( t  — 

kj) so that taking expectations EvZj — 7 ^ (u ) or the autocovariance at lag kj of y. 

Since C j ( v )  6  Q, gk spanning Q in the sense of Eq. (0 .1 )  is equivalent to:

^ill^')l|2 < E I <  Ev{ z i ) tgk >  |2 <  B3\\Ev(Zj:
tew.

( 0 .11)

Using Eq. (0 .8 ) , it follows that:

£ \ f -
hk

( 0 .12)

and:

E
tew

£ \ f -
hk

{£ {h \W

J

< £
Bi

inft E (x j{ t )2)
\\Ev(Zj) \ \ \  (0 .13 )

Now:

ll̂ (*,-)llJ = E/,(")(a.(/*j))a
<  E / ‘( ' W / , ) & ( * j )

V

<  sup E t(x2) £ ( f 2)
t

(0 .14)
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E
fcew

£ \ f
hk < e  BiZ p;  g(/2) = b  e ( n  (0.15)

j - l in f t  E ( x j ( t ) 2)

For a lower bound, we note that:

iijy*i)ii’ > i E » ‘(* w * i) ia c°-16)
if

By assumption, the maximal correlation between /  and x j  is greater than A:

sup
i

|£ „  n(v)EyZj\ >  A

Hence:

(0 .1 7 )

su p ||E „(2 j)j| >  A £ ( /  ) in fE (s j ( i)  ).
j

We denote by j*  the j  which satisfies the bound in Eq. (0 .1 8 ) then:

(0 .18)

A;. £(/2) 2 E
tew

£ \ f
h k

( m ) v
Hence:

(0 .1 9 )

A £ ( P ) <  E
teW

hk

C £ ( h t ) Y

which together with Eq. (0 .1 5 ) proves the result.

( 0 .20)

I

It is useful to give some intuition for why the ratio of minimum to maximum  

variances of the explanatory variables xt are relevant. The intuition comes from a 

simple linear regression. Suppose that the model is:

y ( i )  =  a g a ( 1 )  y { t  -  1) +  e f t ) (0 .21)
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Ta  =
t s r . i  y ( t ) y ( t  -  i)sa (? )

r  £ ? = ,» ( * -  1)29o ( ? )
so that the theoretical value of a  (the probability limit of a )  is:

l im r_ too £  El=i E(y(t)v(t ~  l))ffo ( f j

(0 .22)

a  — (0 .2 3 )
l i m r ^ o o  £  E j=  i  - E ( y ( *  -  l ) 2 ) f f o  ( 5: )

In the fraction model, E (y ( t )y ( t  — 1 )) is a function of the fraction of tim e so that:

S(! /( i )y (*- l) )  = 7 r ( ^ ) .  (0.24)

Likewise:

E  (y(« -  I)2) = 4  ( £ )  ■ (0.25)

We denote the limiting 7 t  and a?  by 7  and a 2.

Using Eqs. (0 .23 ) (0 .2 4 ), (0 .25):

<» =  { 7i ; h (; ^  ■ to -2®)/  <■72(s)go(s)ds

We shall now try to show how Eq. (0 .26 ) can be part of an abstract orthonormal 

expansion for an arbitrary c i(s ) in:

3/(0 = c i ^ y ( < - l )  + ei(0

-  ( 4 )  +  ea(0- (0 .2 7 )
j - 0  /

For the expansion to be orthonormal, we must be able to come up with a set of 

window functions (with norm 1 with respect to a measure cr2 (s)ds)) such that:

Qj = <  Ci, #  > (0 .28 )
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We define the theoretical value of ci(a) to be Then we note that (using Eq.

(0 .23):

_ /  y $ )9 o (s )< r \s )ds

=  J  c1(s)g0(s)a2{s)ds =  <  d ,g0 > . (0 .2 9 )

where the last step follows from the definition of ci and the normalization of the 

window function. Hence, if the gj form an orthonormal basis of L2 weighted by tr2(.s):

; f e J I Cl^  _ S a J^C5)l|2 0 ( ° - 30)j=0

in the weighted L2 norm. When er2(,s) is time-invariant, the ratio of supt E x f i t ) 2 to 

inft E x f i t )2 is 1 so that gj forming an orthonormal basis of L2[0 ,1] is equivalent to 

gj forming an orthonormal basis of the weighted space; otherwise, approximations 

differ in a sense which depends on how nonstationary is the data generating process 

for X j { t ) .
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